These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 20665916)

  • 1. Microfluidic devices for electrokinetic sample fractionation.
    Wang Z; Taylor J; Jemere AB; Harrison DJ
    Electrophoresis; 2010 Aug; 31(15):2575-83. PubMed ID: 20665916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated electrokinetic sample fractionation and solid-phase extraction in microfluidic devices.
    Wang Z; Jemere AB; Harrison DJ
    Electrophoresis; 2012 Nov; 33(21):3151-8. PubMed ID: 22949294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High performance microfluidic capillary electrophoresis devices.
    Fu LM; Leong JC; Lin CF; Tai CH; Tsai CH
    Biomed Microdevices; 2007 Jun; 9(3):405-12. PubMed ID: 17487587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfabricated devices: A new sample introduction approach to mass spectrometry.
    Lazar IM; Grym J; Foret F
    Mass Spectrom Rev; 2006; 25(4):573-94. PubMed ID: 16508917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic chips for mass spectrometry-based proteomics.
    Lee J; Soper SA; Murray KK
    J Mass Spectrom; 2009 May; 44(5):579-93. PubMed ID: 19373851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An automated electrokinetic continuous sample introduction system for microfluidic chip-based capillary electrophoresis.
    He QH; Fang Q; Du WB; Huang YZ; Fang ZL
    Analyst; 2005 Jul; 130(7):1052-8. PubMed ID: 15965529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of proteins using a novel two-depth miniaturized free-flow electrophoresis device with multiple outlet fractionation channels.
    Becker M; Marggraf U; Janasek D
    J Chromatogr A; 2009 Nov; 1216(47):8265-9. PubMed ID: 19631324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscale isoelectric fractionation using photopolymerized membranes.
    Sommer GJ; Mai J; Singh AK; Hatch AV
    Anal Chem; 2011 Apr; 83(8):3120-5. PubMed ID: 21417312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplexed electrokinetic sample fractionation, preconcentration and elution for proteomics.
    Hua Y; Jemere AB; Dragoljic J; Harrison DJ
    Lab Chip; 2013 Jul; 13(13):2651-9. PubMed ID: 23712291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sample flow switching techniques on microfluidic chips.
    Pan YJ; Lin JJ; Luo WJ; Yang RJ
    Biosens Bioelectron; 2006 Feb; 21(8):1644-8. PubMed ID: 16112854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electrokinetic/hydrodynamic flow microfluidic CE-ESI-MS interface utilizing a hydrodynamic flow restrictor for delivery of samples under low EOF conditions.
    Razunguzwa TT; Lenke J; Timperman AT
    Lab Chip; 2005 Aug; 5(8):851-5. PubMed ID: 16027936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous dielectrophoretic cell separation microfluidic device.
    Li Y; Dalton C; Crabtree HJ; Nilsson G; Kaler KV
    Lab Chip; 2007 Feb; 7(2):239-48. PubMed ID: 17268627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic analyte introduction and focusing in plastic microfluidic devices for proteomic analysis.
    Li Y; DeVoe DL; Lee CS
    Electrophoresis; 2003 Jan; 24(1-2):193-9. PubMed ID: 12652591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous microfluidic DNA and protein trapping and concentration by balancing transverse electrokinetic forces.
    Morales MC; Lin H; Zahn JD
    Lab Chip; 2012 Jan; 12(1):99-108. PubMed ID: 22045330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductivity detection for conventional and miniaturised capillary electrophoresis systems.
    Guijt RM; Evenhuis CJ; Macka M; Haddad PR
    Electrophoresis; 2004 Dec; 25(23-24):4032-57. PubMed ID: 15597418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array.
    Shadpour H; Hupert ML; Patterson D; Liu C; Galloway M; Stryjewski W; Goettert J; Soper SA
    Anal Chem; 2007 Feb; 79(3):870-8. PubMed ID: 17263312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel electrophoretic analysis of segmented samples on chip for high-throughput determination of enzyme activities.
    Pei J; Nie J; Kennedy RT
    Anal Chem; 2010 Nov; 82(22):9261-7. PubMed ID: 20949899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully integrated microfluidic separations systems for biochemical analysis.
    Roman GT; Kennedy RT
    J Chromatogr A; 2007 Oct; 1168(1-2):170-88; discussion 169. PubMed ID: 17659293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple injection techniques for microfluidic sample handling.
    Fu LM; Yang RJ; Lee GB; Pan YJ
    Electrophoresis; 2003 Sep; 24(17):3026-32. PubMed ID: 12973806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional (3D) hydrodynamic focusing for continuous sampling and analysis of adherent cells.
    Xu C; Wang M; Yin X
    Analyst; 2011 Oct; 136(19):3877-83. PubMed ID: 21785798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.