BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2287 related articles for article (PubMed ID: 20666118)

  • 21. A putative flip-flop switch for control of REM sleep.
    Lu J; Sherman D; Devor M; Saper CB
    Nature; 2006 Jun; 441(7093):589-94. PubMed ID: 16688184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Regulation of sleep and wakefulness through the monoaminergic and cholinergic systems].
    Koyama Y
    Brain Nerve; 2012 Jun; 64(6):601-10. PubMed ID: 22647467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural mechanism of rapid eye movement sleep generation with reference to REM-OFF neurons in locus coeruleus.
    Pal D; Mallick BN
    Indian J Med Res; 2007 Jun; 125(6):721-39. PubMed ID: 17704548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Paradoxical REM sleep promoting and permitting neuronal networks.
    Jones BE
    Arch Ital Biol; 2004 Jul; 142(4):379-96. PubMed ID: 15493543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The neuroanatomy and neurochemistry of sleep-wake control.
    Gompf HS; Anaclet C
    Curr Opin Physiol; 2020 Jun; 15():143-151. PubMed ID: 32647777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of the dorsal paragigantocellular reticular nucleus in paradoxical (rapid eye movement) sleep generation: a combined electrophysiological and anatomical study in the rat.
    Goutagny R; Luppi PH; Salvert D; Lapray D; Gervasoni D; Fort P
    Neuroscience; 2008 Mar; 152(3):849-57. PubMed ID: 18308473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. State transitions between wake and sleep, and within the ultradian cycle, with focus on the link to neuronal activity.
    Merica H; Fortune RD
    Sleep Med Rev; 2004 Dec; 8(6):473-85. PubMed ID: 15556379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Modulation by the hypocretinergic/orexinergic neurotransmission system in sleep-wakefulness cycle states].
    del Cid-Pellitero E; Garzón M
    Rev Neurol; 2007 Oct 16-31; 45(8):482-90. PubMed ID: 17948215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Melanin-concentrating hormone control of sleep-wake behavior.
    Monti JM; Torterolo P; Lagos P
    Sleep Med Rev; 2013 Aug; 17(4):293-8. PubMed ID: 23477948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice.
    Kroeger D; Ferrari LL; Petit G; Mahoney CE; Fuller PM; Arrigoni E; Scammell TE
    J Neurosci; 2017 Feb; 37(5):1352-1366. PubMed ID: 28039375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neurophysiological mechanisms of sleep and wakefulness: a question of balance.
    Sinton CM; McCarley RW
    Semin Neurol; 2004 Sep; 24(3):211-23. PubMed ID: 15449215
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [How does the brain wake up? The nitric oxide blow].
    Mariño J; Cudeiro J
    Rev Neurol; 2006 May 1-15; 42(9):535-41. PubMed ID: 16676277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Brain and sleep mechanism].
    Kitahama K
    Rinsho Shinkeigaku; 2006 Nov; 46(11):815-7. PubMed ID: 17432188
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohistochemistry, and electrophysiology in the rat.
    Semba K; Reiner PB; McGeer EG; Fibiger HC
    J Comp Neurol; 1988 Jan; 267(3):433-53. PubMed ID: 2449477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cholinergic and noncholinergic brainstem neurons expressing Fos after paradoxical (REM) sleep deprivation and recovery.
    Verret L; Léger L; Fort P; Luppi PH
    Eur J Neurosci; 2005 May; 21(9):2488-504. PubMed ID: 15932606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: an HRP and autoradiographic tracing study in the cat.
    Holstege G
    J Comp Neurol; 1987 Jun; 260(1):98-126. PubMed ID: 3496365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retrograde double-labeling study of common afferent projections to the dorsal raphe and the nuclear core of the locus coeruleus in the rat.
    Lee HS; Kim MA; Waterhouse BD
    J Comp Neurol; 2005 Jan; 481(2):179-93. PubMed ID: 15562508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulating microinjection experiments in a novel model of the rat sleep-wake regulatory network.
    Diniz Behn CG; Booth V
    J Neurophysiol; 2010 Apr; 103(4):1937-53. PubMed ID: 20107121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Topography of the sleep/wake states related EEG microstructure and transitions structure differentiates the functionally distinct cholinergic innervation disorders in rat.
    Petrovic J; Lazic K; Ciric J; Kalauzi A; Saponjic J
    Behav Brain Res; 2013 Nov; 256():108-18. PubMed ID: 23933142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sleep-related neurons in the central nucleus of the amygdala of rats and their modulation by the dorsal raphe nucleus.
    Jha SK; Ross RJ; Morrison AR
    Physiol Behav; 2005 Nov; 86(4):415-26. PubMed ID: 16137725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 115.