These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 20666392)
21. Reciprocal regulation of carbon monoxide metabolism and the circadian clock. Klemz R; Reischl S; Wallach T; Witte N; Jürchott K; Klemz S; Lang V; Lorenzen S; Knauer M; Heidenreich S; Xu M; Ripperger JA; Schupp M; Stanewsky R; Kramer A Nat Struct Mol Biol; 2017 Jan; 24(1):15-22. PubMed ID: 27892932 [TBL] [Abstract][Full Text] [Related]
22. Resonance Raman study of Bacillus subtilis NO synthase-like protein: similarities and differences with mammalian NO synthases. Santolini J; Roman M; Stuehr DJ; Mattioli TA Biochemistry; 2006 Feb; 45(5):1480-9. PubMed ID: 16445290 [TBL] [Abstract][Full Text] [Related]
23. Resonance Raman characterization of the heme cofactor in cystathionine beta-synthase. Identification of the Fe-S(Cys) vibration in the six-coordinate low-spin heme. Green EL; Taoka S; Banerjee R; Loehr TM Biochemistry; 2001 Jan; 40(2):459-63. PubMed ID: 11148040 [TBL] [Abstract][Full Text] [Related]
24. Signal transduction by heme-containing PAS-domain proteins. Gilles-Gonzalez MA; Gonzalez G J Appl Physiol (1985); 2004 Feb; 96(2):774-83. PubMed ID: 14715687 [TBL] [Abstract][Full Text] [Related]
25. Resonance Raman spectroscopic characterization of alpha-hydroxyheme and verdoheme complexes of heme oxygenase. Takahashi S; Matera KM; Fujii H; Zhou H; Ishikawa K; Yoshida T; Ikeda-Saito M; Rousseau DL Biochemistry; 1997 Feb; 36(6):1402-10. PubMed ID: 9063888 [TBL] [Abstract][Full Text] [Related]
26. Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Kaasik K; Lee CC Nature; 2004 Jul; 430(6998):467-71. PubMed ID: 15269772 [TBL] [Abstract][Full Text] [Related]
27. Spectroscopic comparison of the heme active sites in WT KatG and its S315T mutant. Lukat-Rodgers GS; Wengenack NL; Rusnak F; Rodgers KR Biochemistry; 2000 Aug; 39(32):9984-93. PubMed ID: 10933819 [TBL] [Abstract][Full Text] [Related]
28. Electronic absorption, EPR, and resonance raman spectroscopy of CooA, a CO-sensing transcription activator from R. rubrum, reveals a five-coordinate NO-heme. Reynolds MF; Parks RB; Burstyn JN; Shelver D; Thorsteinsson MV; Kerby RL; Roberts GP; Vogel KM; Spiro TG Biochemistry; 2000 Jan; 39(2):388-96. PubMed ID: 10631000 [TBL] [Abstract][Full Text] [Related]
29. Replacement of the proximal histidine iron ligand by a cysteine or tyrosine converts heme oxygenase to an oxidase. Liu Y; Moënne-Loccoz P; Hildebrand DP; Wilks A; Loehr TM; Mauk AG; Ortiz de Montellano PR Biochemistry; 1999 Mar; 38(12):3733-43. PubMed ID: 10090762 [TBL] [Abstract][Full Text] [Related]
30. BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system. Kondratov RV; Chernov MV; Kondratova AA; Gorbacheva VY; Gudkov AV; Antoch MP Genes Dev; 2003 Aug; 17(15):1921-32. PubMed ID: 12897057 [TBL] [Abstract][Full Text] [Related]
31. Spectroscopic characterization of the soluble guanylate cyclase-like heme domains from Vibrio cholerae and Thermoanaerobacter tengcongensis. Karow DS; Pan D; Tran R; Pellicena P; Presley A; Mathies RA; Marletta MA Biochemistry; 2004 Aug; 43(31):10203-11. PubMed ID: 15287748 [TBL] [Abstract][Full Text] [Related]
32. Resonance Raman studies of cytochrome c' support the binding of NO and CO to opposite sides of the heme: implications for ligand discrimination in heme-based sensors. Andrew CR; Green EL; Lawson DM; Eady RR Biochemistry; 2001 Apr; 40(13):4115-22. PubMed ID: 11300792 [TBL] [Abstract][Full Text] [Related]
33. Resonance Raman and EPR spectroscopic studies on heme-heme oxygenase complexes. Sun J; Wilks A; Ortiz de Montellano PR; Loehr TM Biochemistry; 1993 Dec; 32(51):14151-7. PubMed ID: 8260499 [TBL] [Abstract][Full Text] [Related]
34. Structural investigations of the hemoglobin of the cyanobacterium Synechocystis PCC6803 reveal a unique distal heme pocket. Couture M; Das TK; Savard PY; Ouellet Y; Wittenberg JB; Wittenberg BA; Rousseau DL; Guertin M Eur J Biochem; 2000 Aug; 267(15):4770-80. PubMed ID: 10903511 [TBL] [Abstract][Full Text] [Related]
35. Structures and solution properties of two novel periplasmic sensor domains with c-type heme from chemotaxis proteins of Geobacter sulfurreducens: implications for signal transduction. Pokkuluri PR; Pessanha M; Londer YY; Wood SJ; Duke NE; Wilton R; Catarino T; Salgueiro CA; Schiffer M J Mol Biol; 2008 Apr; 377(5):1498-517. PubMed ID: 18329666 [TBL] [Abstract][Full Text] [Related]
37. Arg97 at the heme-distal side of the isolated heme-bound PAS domain of a heme-based oxygen sensor from Escherichia coli (Ec DOS) plays critical roles in autoxidation and binding to gases, particularly O2. Ishitsuka Y; Araki Y; Tanaka A; Igarashi J; Ito O; Shimizu T Biochemistry; 2008 Aug; 47(34):8874-84. PubMed ID: 18672892 [TBL] [Abstract][Full Text] [Related]
38. The novel heme-dependent inducible protein, SRRD regulates heme biosynthesis and circadian rhythms. Adachi Y; Umeda M; Kawazoe A; Sato T; Ohkawa Y; Kitajima S; Izawa S; Sagami I; Taketani S Arch Biochem Biophys; 2017 Oct; 631():19-29. PubMed ID: 28802827 [TBL] [Abstract][Full Text] [Related]
39. Resonance Raman studies indicate a unique heme active site in prostaglandin H synthase. Lou BS; Snyder JK; Marshall P; Wang JS; Wu G; Kulmacz RJ; Tsai AL; Wang J Biochemistry; 2000 Oct; 39(40):12424-34. PubMed ID: 11015223 [TBL] [Abstract][Full Text] [Related]
40. Design of a five-coordinate heme protein maquette: a spectroscopic model of deoxymyoglobin. Zhuang J; Amoroso JH; Kinloch R; Dawson JH; Baldwin MJ; Gibney BR Inorg Chem; 2004 Dec; 43(26):8218-20. PubMed ID: 15606161 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]