These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 20666414)

  • 1. High-resolution differential ion mobility separations using planar analyzers at elevated dispersion fields.
    Shvartsburg AA; Prior DC; Tang K; Smith RD
    Anal Chem; 2010 Sep; 82(18):7649-55. PubMed ID: 20666414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution differential ion mobility separations using helium-rich gases.
    Shvartsburg AA; Danielson WF; Smith RD
    Anal Chem; 2010 Mar; 82(6):2456-62. PubMed ID: 20151640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential ion mobility separations of peptides with resolving power exceeding 50.
    Shvartsburg AA; Tang K; Smith RD
    Anal Chem; 2010 Jan; 82(1):32-5. PubMed ID: 19938817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrahigh-resolution differential ion mobility spectrometry using extended separation times.
    Shvartsburg AA; Smith RD
    Anal Chem; 2011 Jan; 83(1):23-9. PubMed ID: 21117630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional FAIMS-IMS Characterization of Peptide Conformers with Resolution Exceeding 1000.
    Li J; Li L; Gao W; Shi S; Yu J; Tang K
    Anal Chem; 2022 Apr; 94(16):6363-6370. PubMed ID: 35412805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of ion distortion in field asymmetric waveform ion mobility spectrometry via variation of dispersion field and gas temperature.
    Robinson EW; Shvartsburg AA; Tang K; Smith RD
    Anal Chem; 2008 Oct; 80(19):7508-15. PubMed ID: 18729473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elimination of the helium requirement in high-field asymmetric waveform ion mobility spectrometry (FAIMS): beneficial effects of decreasing the analyzer gap width on peptide analysis.
    Barnett DA; Ouellette RJ
    Rapid Commun Mass Spectrom; 2011 Jul; 25(14):1959-71. PubMed ID: 21698679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Ion Mobility Separations in the Low-Pressure Regime.
    Shvartsburg AA; Haris A; Andrzejewski R; Entwistle A; Giles R
    Anal Chem; 2018 Jan; 90(1):936-943. PubMed ID: 29179535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional gas-phase separations coupled to mass spectrometry for analysis of complex mixtures.
    Tang K; Li F; Shvartsburg AA; Strittmatter EF; Smith RD
    Anal Chem; 2005 Oct; 77(19):6381-8. PubMed ID: 16194103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional ion mobility analyses of proteins and peptides.
    Shvartsburg AA; Tang K; Smith RD
    Methods Mol Biol; 2009; 492():417-45. PubMed ID: 19241049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distortion of ion structures by field asymmetric waveform ion mobility spectrometry.
    Shvartsburg AA; Li F; Tang K; Smith RD
    Anal Chem; 2007 Feb; 79(4):1523-8. PubMed ID: 17297950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution field asymmetric waveform ion mobility spectrometry using new planar geometry analyzers.
    Shvartsburg AA; Li F; Tang K; Smith RD
    Anal Chem; 2006 Jun; 78(11):3706-14. PubMed ID: 16737227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Field Differential Ion Mobility Spectrometry of Dipole-Aligned Macromolecules.
    Pathak P; Shvartsburg AA
    Anal Chem; 2020 Oct; 92(20):13855-13863. PubMed ID: 32886883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential ion mobility separations in up to 100% helium using microchips.
    Shvartsburg AA; Ibrahim YM; Smith RD
    J Am Soc Mass Spectrom; 2014 Mar; 25(3):480-9. PubMed ID: 24402673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion Mobility Spectrometry of Superheated Macromolecules at Electric Fields up to 500 Td.
    Andrzejewski R; Entwistle A; Giles R; Shvartsburg AA
    Anal Chem; 2021 Sep; 93(35):12049-12058. PubMed ID: 34423987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pushing the Frontier of High-Definition Ion Mobility Spectrometry Using FAIMS.
    A Shvartsburg A; A Anderson G; D Smith R
    Mass Spectrom (Tokyo); 2013; 2(Spec Iss):S0011. PubMed ID: 24349930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field asymmetric waveform ion mobility spectrometry studies of proteins: Dipole alignment in ion mobility spectrometry?
    Shvartsburg AA; Bryskiewicz T; Purves RW; Tang K; Guevremont R; Smith RD
    J Phys Chem B; 2006 Nov; 110(43):21966-80. PubMed ID: 17064166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.
    Swearingen KE; Moritz RL
    Expert Rev Proteomics; 2012 Oct; 9(5):505-17. PubMed ID: 23194268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaling of the resolving power and sensitivity for planar FAIMS and mobility-based discrimination in flow- and field-driven analyzers.
    Shvartsburg AA; Smith RD
    J Am Soc Mass Spectrom; 2007 Sep; 18(9):1672-81. PubMed ID: 17723907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast differential ion mobility spectrometry at extreme electric fields coupled to mass spectrometry.
    Shvartsburg AA; Tang K; Smith RD; Holden M; Rush M; Thompson A; Toutoungi D
    Anal Chem; 2009 Oct; 81(19):8048-53. PubMed ID: 19708673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.