These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 20666453)
1. Polyamines accelerate codon recognition by transfer RNAs on the ribosome. Hetrick B; Khade PK; Lee K; Stephen J; Thomas A; Joseph S Biochemistry; 2010 Aug; 49(33):7179-89. PubMed ID: 20666453 [TBL] [Abstract][Full Text] [Related]
2. Conformational sampling of aminoacyl-tRNA during selection on the bacterial ribosome. Geggier P; Dave R; Feldman MB; Terry DS; Altman RB; Munro JB; Blanchard SC J Mol Biol; 2010 Jun; 399(4):576-95. PubMed ID: 20434456 [TBL] [Abstract][Full Text] [Related]
3. Proofreading of the codon-anticodon interaction on ribosomes. Thompson RC; Stone PJ Proc Natl Acad Sci U S A; 1977 Jan; 74(1):198-202. PubMed ID: 319457 [TBL] [Abstract][Full Text] [Related]
4. Decoding at the ribosomal A site. The effect of a defined codon-anticodon mismatch upon the behavior of bound aminoacyl transfer RNA. Hornig H; Woolley P; Lührmann R J Biol Chem; 1984 May; 259(9):5632-6. PubMed ID: 6371008 [TBL] [Abstract][Full Text] [Related]
5. Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Gromadski KB; Rodnina MV Mol Cell; 2004 Jan; 13(2):191-200. PubMed ID: 14759365 [TBL] [Abstract][Full Text] [Related]
6. Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. Piepenburg O; Pape T; Pleiss JA; Wintermeyer W; Uhlenbeck OC; Rodnina MV Biochemistry; 2000 Feb; 39(7):1734-8. PubMed ID: 10677222 [TBL] [Abstract][Full Text] [Related]
7. Characterization of aminoacyl transfer ribonucleic acid formation stimulated by polyamines. Takeda Y; Matsuzaki K; Igarashi K J Bacteriol; 1972 Jul; 111(1):1-6. PubMed ID: 4591475 [TBL] [Abstract][Full Text] [Related]
8. Elongation factor-Tu can repetitively engage aminoacyl-tRNA within the ribosome during the proofreading stage of tRNA selection. Morse JC; Girodat D; Burnett BJ; Holm M; Altman RB; Sanbonmatsu KY; Wieden HJ; Blanchard SC Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3610-3620. PubMed ID: 32024753 [TBL] [Abstract][Full Text] [Related]
9. Aminoacyl-tRNA binding at the recognition site is the first step of the elongation cycle of protein synthesis. Lake JA Proc Natl Acad Sci U S A; 1977 May; 74(5):1903-7. PubMed ID: 266713 [TBL] [Abstract][Full Text] [Related]
10. Initial binding of the elongation factor Tu.GTP.aminoacyl-tRNA complex preceding codon recognition on the ribosome. Rodnina MV; Pape T; Fricke R; Kuhn L; Wintermeyer W J Biol Chem; 1996 Jan; 271(2):646-52. PubMed ID: 8557669 [TBL] [Abstract][Full Text] [Related]
11. Binding of misacylated tRNAs to the ribosomal A site. Dale T; Uhlenbeck OC RNA; 2005 Nov; 11(11):1610-5. PubMed ID: 16244128 [TBL] [Abstract][Full Text] [Related]
12. Codon-anticodon interaction at the ribosomal P (peptidyl-tRNA)site. Wurmbach P; Nierhaus KH Proc Natl Acad Sci U S A; 1979 May; 76(5):2143-7. PubMed ID: 221915 [TBL] [Abstract][Full Text] [Related]
13. Testing constraints on rRNA bases that make nonsequence-specific contacts with the codon-anticodon complex in the ribosomal A site. Taliaferro DL; Farabaugh PJ RNA; 2007 Aug; 13(8):1279-86. PubMed ID: 17592040 [TBL] [Abstract][Full Text] [Related]
14. [The effect of modification of tRNA nucleotide-37 on the tRNA interaction with the P- and A-site of the 70S ribosome Escherichia coli]. Konevega AL; Soboleva NG; Makhno VI; Peshekhonov AV; Katunin VI Mol Biol (Mosk); 2006; 40(4):669-83. PubMed ID: 16913226 [TBL] [Abstract][Full Text] [Related]
15. Destabilization of codon-anticodon interaction in the ribosomal exit site. Lill R; Wintermeyer W J Mol Biol; 1987 Jul; 196(1):137-48. PubMed ID: 2443714 [TBL] [Abstract][Full Text] [Related]
16. Protein Synthesis in E. coli: Dependence of Codon-Specific Elongation on tRNA Concentration and Codon Usage. Rudorf S; Lipowsky R PLoS One; 2015; 10(8):e0134994. PubMed ID: 26270805 [TBL] [Abstract][Full Text] [Related]
17. Recognition of the codon-anticodon helix by ribosomal RNA. Yoshizawa S; Fourmy D; Puglisi JD Science; 1999 Sep; 285(5434):1722-5. PubMed ID: 10481006 [TBL] [Abstract][Full Text] [Related]
18. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome. Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702 [TBL] [Abstract][Full Text] [Related]
19. A GTPase reaction accompanying the rejection of Leu-tRNA2 by UUU-programmed ribosomes. Proofreading of the codon-anticodon interaction by ribosomes. Thompson RC; Dix DB; Gerson RB; Karim AM J Biol Chem; 1981 Jan; 256(1):81-6. PubMed ID: 6108958 [TBL] [Abstract][Full Text] [Related]
20. Kinetic basis for global loss of fidelity arising from mismatches in the P-site codon:anticodon helix. Zaher HS; Green R RNA; 2010 Oct; 16(10):1980-9. PubMed ID: 20724456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]