BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 20666491)

  • 1. Uptake and transformation of soil [14C]-trinitrotoluene by cool-season grasses.
    Duringer JM; Morrie Craig A; Smith DJ; Chaney RL
    Environ Sci Technol; 2010 Aug; 44(16):6325-30. PubMed ID: 20666491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vetiver grass is capable of removing TNT from soil in the presence of urea.
    Das P; Datta R; Makris KC; Sarkar D
    Environ Pollut; 2010 May; 158(5):1980-3. PubMed ID: 20047780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of tall fescue as a low radiocesium-uptake grass species to replace orchardgrass in Japan.
    Togamura Y; Uchiyama K; Akiyama F; Hirano K; Yamada D; Shibuya T
    J Environ Radioact; 2021 Oct; 237():106694. PubMed ID: 34229188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High uptake of 2,4,6-trinitrotoluene by vetiver grass--potential for phytoremediation?
    Makris KC; Shakya KM; Datta R; Sarkar D; Pachanoor D
    Environ Pollut; 2007 Mar; 146(1):1-4. PubMed ID: 16899329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation management of selenium-laden drainage sediments in the San Luis Drain: a greenhouse feasibility study.
    Bañuelos GS; Lin ZQ
    Ecotoxicol Environ Saf; 2005 Nov; 62(3):309-16. PubMed ID: 16216624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced bioavailability of sorbed 2,4,6-trinitrotoluene (TNT) by a bacterial consortium.
    Robertson BK; Jjemba PK
    Chemosphere; 2005 Jan; 58(3):263-70. PubMed ID: 15581929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating uptake and transport of TNT by plants using STELLA.
    Ouyang Y; Huang CH; Huang DY; Lin D; Cui L
    Chemosphere; 2007 Oct; 69(8):1245-52. PubMed ID: 17655913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of phytoremediation of a TNT-contaminated soil using the CTSPAC model.
    Ouyang Y; Shinde D; Ma LQ
    J Environ Qual; 2005; 34(5):1490-6. PubMed ID: 16091601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selenium and sulfur accumulation and soil selenium dissipation in planting of four herbaceous plant species in soil contaminated with drainage sediment rich in both selenium and sulfur.
    Wu L; Guo X; Bañuelos GS
    Int J Phytoremediation; 2003; 5(1):25-40. PubMed ID: 12710233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dendroremediation of trinitrotoluene (TNT). Part 2: fate of radio-labelled TNT in trees.
    Schoenmuth BW; Pestemer W
    Environ Sci Pollut Res Int; 2004; 11(5):331-9. PubMed ID: 15506637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation of 2,4,6-trinitrotoluene (TNT) by Raoultella terrigena.
    Claus H; Bausinger T; Lehmler I; Perret N; Fels G; Dehner U; Preuss J; König H
    Biodegradation; 2007 Feb; 18(1):27-35. PubMed ID: 16758276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Herbaceous vegetation productivity, persistence, and metals uptake on a biosolids-amended mine soil.
    Evanylo GK; Abaye AO; Dundas C; Zipper CE; Lemus R; Sukkariyah B; Rockett J
    J Environ Qual; 2005; 34(5):1811-9. PubMed ID: 16151233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate of RDX and TNT in agronomic plants.
    Vila M; Lorber-Pascal S; Laurent F
    Environ Pollut; 2007 Jul; 148(1):148-54. PubMed ID: 17254682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioremediation of atrazine-contaminated soil by forage grasses: transformation, uptake, and detoxification.
    Lin CH; Lerch RN; Garrett HE; George MF
    J Environ Qual; 2008; 37(1):196-206. PubMed ID: 18178893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High TNT-transforming activity by a mixed culture acclimated and maintained on crude-oil-containing media.
    Popesku JT; Singh A; Zhao JS; Hawari J; Ward OP
    Can J Microbiol; 2003 May; 49(5):362-6. PubMed ID: 12897831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation of (15)N-TNT transformation products into humifying plant organic matter as revealed by one- and two-dimensional solid state NMR spectroscopy.
    Knicker H
    Sci Total Environ; 2003 Jun; 308(1-3):211-20. PubMed ID: 12738214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solute transport and extraction by a single root in unsaturated soils: model development and experiment.
    Kim J; Sung K; Corapcioglu MY; Drew MC
    Environ Pollut; 2004 Sep; 131(1):61-70. PubMed ID: 15210276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation and fate of 2,4,6-trinitrotoluene (TNT) in anaerobic bioslurry reactors under various aeration schemes: implications for the decontamination of soils.
    Newcombe DA; Crawford RL
    Biodegradation; 2007 Dec; 18(6):741-54. PubMed ID: 17273913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of vegetation to remediate soil freshly contaminated by recalcitrant contaminants.
    Sung K; Munster CL; Rhykerd R; Drew MC; Corapcioglu MY
    Water Res; 2003 May; 37(10):2408-18. PubMed ID: 12727252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid and soil.
    Muter O; Potapova K; Limane B; Sproge K; Jakobsone I; Cepurnieks G; Bartkevics V
    J Environ Manage; 2012 May; 98():51-5. PubMed ID: 22245864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.