BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 20666503)

  • 21. Formation of Schiff-base for photoreaction mechanism of red shift of GFP spectra.
    Koseki J; Kita Y; Tachikawa M
    Biophys Chem; 2010 Apr; 147(3):140-5. PubMed ID: 20167417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The nature of the primary photochemical events in rhodopsin and isorhodopsin.
    Birge RR; Einterz CM; Knapp HM; Murray LP
    Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 11-cis-retinal protonated Schiff base: influence of the protein environment on the geometry of the rhodopsin chromophore.
    Sugihara M; Buss V; Entel P; Elstner M; Frauenheim T
    Biochemistry; 2002 Dec; 41(51):15259-66. PubMed ID: 12484764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing the rhodopsin cavity with reduced retinal models at the CASPT2//CASSCF/AMBER level of theory.
    Ferré N; Olivucci M
    J Am Chem Soc; 2003 Jun; 125(23):6868-9. PubMed ID: 12783530
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamical friction effects on the photoisomerization of a model protonated Schiff base in solution.
    Malhado JP; Spezia R; Hynes JT
    J Phys Chem A; 2011 Apr; 115(16):3720-35. PubMed ID: 20932049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Counterion controlled photoisomerization of retinal chromophore models: a computational investigation.
    Cembran A; Bernardi F; Olivucci M; Garavelli M
    J Am Chem Soc; 2004 Dec; 126(49):16018-37. PubMed ID: 15584736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure.
    Okada T; Sugihara M; Bondar AN; Elstner M; Entel P; Buss V
    J Mol Biol; 2004 Sep; 342(2):571-83. PubMed ID: 15327956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin.
    Matsumoto H; Yoshizawa T
    Photochem Photobiol; 2008; 84(4):985-9. PubMed ID: 18399914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How Rhodopsin Tunes the Equilibrium between Protonated and Deprotonated Forms of the Retinal Chromophore.
    van Keulen SC; Solano A; Rothlisberger U
    J Chem Theory Comput; 2017 Sep; 13(9):4524-4534. PubMed ID: 28731695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing the π→π* photoisomerization mechanism of cis-azobenzene by multi-state ab initio on-the-fly trajectory dynamics simulation.
    Yu L; Xu C; Zhu C
    Phys Chem Chem Phys; 2015 Jul; 17(27):17646-60. PubMed ID: 26081715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Key role of electrostatic interactions in bacteriorhodopsin proton transfer.
    Bondar AN; Fischer S; Smith JC; Elstner M; Suhai S
    J Am Chem Soc; 2004 Nov; 126(44):14668-77. PubMed ID: 15521787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inherent chirality of the retinal chromophore in rhodopsin-A nonempirical theoretical analysis of chiroptical data.
    Buss V
    Chirality; 2001 Jan; 13(1):13-23. PubMed ID: 11135409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Backbone modification of retinal induces protein-like excited state dynamics in solution.
    Sovdat T; Bassolino G; Liebel M; Schnedermann C; Fletcher SP; Kukura P
    J Am Chem Soc; 2012 May; 134(20):8318-20. PubMed ID: 22536821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bicycle-pedal isomerization in a rhodopsin chromophore model.
    Schapiro I; Weingart O; Buss V
    J Am Chem Soc; 2009 Jan; 131(1):16-7. PubMed ID: 19072155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthetic control of retinal photochemistry and photophysics in solution.
    Bassolino G; Sovdat T; Liebel M; Schnedermann C; Odell B; Claridge TD; Kukura P; Fletcher SP
    J Am Chem Soc; 2014 Feb; 136(6):2650-8. PubMed ID: 24479840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Retinal models: comparison of electronic absorption spectra in the gas phase and in methanol solution.
    Muñoz-Losa A; Fdez Galván I; Aguilar MA; Martín ME
    J Phys Chem B; 2008 Jul; 112(29):8815-23. PubMed ID: 18590305
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reaction pathways of photoexcited retinal in proteorhodopsin studied by pump-dump-probe spectroscopy.
    Rupenyan A; van Stokkum IH; Arents JC; van Grondelle R; Hellingwerf KJ; Groot ML
    J Phys Chem B; 2009 Dec; 113(50):16251-6. PubMed ID: 19928893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vibrational analysis of excited and ground electronic states of all-trans retinal protonated Schiff-bases.
    Kraack JP; Buckup T; Motzkus M
    Phys Chem Chem Phys; 2011 Dec; 13(48):21402-10. PubMed ID: 22033578
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoresponse of the protonated Schiff-base retinal chromophore in the gas phase.
    Toker Y; Rahbek DB; Kiefer HV; Rajput J; Antoine R; Dugourd P; Brøndsted Nielsen S; Bochenkova AV; Andersen LH
    Phys Chem Chem Phys; 2013 Dec; 15(45):19566-9. PubMed ID: 24142109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ab initio molecular dynamics simulation of photoisomerization in azobenzene in the n pi* state.
    Ootani Y; Satoh K; Nakayama A; Noro T; Taketsugu T
    J Chem Phys; 2009 Nov; 131(19):194306. PubMed ID: 19929050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.