BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 20667133)

  • 1. Data reduction for spectral clustering to analyze high throughput flow cytometry data.
    Zare H; Shooshtari P; Gupta A; Brinkman RR
    BMC Bioinformatics; 2010 Jul; 11():403. PubMed ID: 20667133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast clustering of single-cell flow cytometry data using FlowGrid.
    Ye X; Ho JWK
    BMC Syst Biol; 2019 Apr; 13(Suppl 2):35. PubMed ID: 30953498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Misty Mountain clustering: application to fast unsupervised flow cytometry gating.
    Sugár IP; Sealfon SC
    BMC Bioinformatics; 2010 Oct; 11():502. PubMed ID: 20932336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 2: biological evaluation.
    Mosmann TR; Naim I; Rebhahn J; Datta S; Cavenaugh JS; Weaver JM; Sharma G
    Cytometry A; 2014 May; 85(5):422-33. PubMed ID: 24532172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CytoTree: an R/Bioconductor package for analysis and visualization of flow and mass cytometry data.
    Dai Y; Xu A; Li J; Wu L; Yu S; Chen J; Zhao W; Sun XJ; Huang J
    BMC Bioinformatics; 2021 Mar; 22(1):138. PubMed ID: 33752602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. immunoClust--An automated analysis pipeline for the identification of immunophenotypic signatures in high-dimensional cytometric datasets.
    Sörensen T; Baumgart S; Durek P; Grützkau A; Häupl T
    Cytometry A; 2015 Jul; 87(7):603-15. PubMed ID: 25850678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 1: algorithm design.
    Naim I; Datta S; Rebhahn J; Cavenaugh JS; Mosmann TR; Sharma G
    Cytometry A; 2014 May; 85(5):408-21. PubMed ID: 24677621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. flowPeaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding.
    Ge Y; Sealfon SC
    Bioinformatics; 2012 Aug; 28(15):2052-8. PubMed ID: 22595209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid cell population identification in flow cytometry data.
    Aghaeepour N; Nikolic R; Hoos HH; Brinkman RR
    Cytometry A; 2011 Jan; 79(1):6-13. PubMed ID: 21182178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. optimalFlow: optimal transport approach to flow cytometry gating and population matching.
    Del Barrio E; Inouzhe H; Loubes JM; Matrán C; Mayo-Íscar A
    BMC Bioinformatics; 2020 Oct; 21(1):479. PubMed ID: 33109072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive and unbiased multiparameter high-throughput screening by compaRe finds effective and subtle drug responses in AML models.
    Chalabi Hajkarim M; Karjalainen E; Osipovitch M; Dimopoulos K; Gordon SL; Ambri F; Rasmussen KD; Grønbæk K; Helin K; Wennerberg K; Won KJ
    Elife; 2022 Feb; 11():. PubMed ID: 35166670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable clustering algorithms for continuous environmental flow cytometry.
    Hyrkas J; Clayton S; Ribalet F; Halperin D; Armbrust EV; Howe B
    Bioinformatics; 2016 Feb; 32(3):417-23. PubMed ID: 26476780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GeoWaVe: geometric median clustering with weighted voting for ensemble clustering of cytometry data.
    Burton RJ; Cuff SM; Morgan MP; Artemiou A; Eberl M
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36413065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data.
    Weber LM; Robinson MD
    Cytometry A; 2016 Dec; 89(12):1084-1096. PubMed ID: 27992111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competitive SWIFT cluster templates enhance detection of aging changes.
    Rebhahn JA; Roumanes DR; Qi Y; Khan A; Thakar J; Rosenberg A; Lee FE; Quataert SA; Sharma G; Mosmann TR
    Cytometry A; 2016 Jan; 89(1):59-70. PubMed ID: 26441030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Cell Populations in Single Cell Mass Cytometry Data.
    Abdelaal T; van Unen V; Höllt T; Koning F; Reinders MJT; Mahfouz A
    Cytometry A; 2019 Jul; 95(7):769-781. PubMed ID: 30861637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated gating of flow cytometry data via robust model-based clustering.
    Lo K; Brinkman RR; Gottardo R
    Cytometry A; 2008 Apr; 73(4):321-32. PubMed ID: 18307272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single and multi-subject clustering of flow cytometry data for cell-type identification and anomaly detection.
    Pouyan MB; Jindal V; Birjandtalab J; Nourani M
    BMC Med Genomics; 2016 Aug; 9 Suppl 2(Suppl 2):41. PubMed ID: 27510222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. flowDensity: reproducing manual gating of flow cytometry data by automated density-based cell population identification.
    Malek M; Taghiyar MJ; Chong L; Finak G; Gottardo R; Brinkman RR
    Bioinformatics; 2015 Feb; 31(4):606-7. PubMed ID: 25378466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. flowEMMi: an automated model-based clustering tool for microbial cytometric data.
    Ludwig J; Zu Siederdissen CH; Liu Z; Stadler PF; Müller S
    BMC Bioinformatics; 2019 Dec; 20(1):643. PubMed ID: 31815609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.