These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 2066770)

  • 1. A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity.
    Wörgötter F; Koch C
    J Neurosci; 1991 Jul; 11(7):1959-79. PubMed ID: 2066770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GABA-induced inactivation of functionally characterized sites in cat visual cortex (area 18): effects on direction selectivity.
    Crook JM; Kisvárday ZF; Eysel UT
    J Neurophysiol; 1996 May; 75(5):2071-88. PubMed ID: 8734604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A possible basic cortical microcircuit called "cascaded inhibition." Results from cortical network models and recording experiments from striate simple cells.
    Wörgötter F; Nelle E; Li B; Wang L; Diao Y
    Exp Brain Res; 1998 Oct; 122(3):318-32. PubMed ID: 9808305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Velocity tuning of cells in dorsal lateral geniculate nucleus and retina of the cat.
    Frishman LJ; Schweitzer-Tong DE; Goldstein EB
    J Neurophysiol; 1983 Dec; 50(6):1393-414. PubMed ID: 6663334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of orientation-selective EPSPs in simple cells of cat visual cortex.
    Ferster D
    J Neurosci; 1987 Jun; 7(6):1780-91. PubMed ID: 3598648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between preferred orientation and receptive field position of neurons in extrastriate cortex (area 19) in the cat.
    Leventhal AG; Schall JD; Wallace W
    J Comp Neurol; 1984 Jan; 222(3):445-51. PubMed ID: 6699212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model circuit of spiking neurons generating directional selectivity in simple cells.
    Maex R; Orban GA
    J Neurophysiol; 1996 Apr; 75(4):1515-45. PubMed ID: 8727395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity.
    Troyer TW; Krukowski AE; Priebe NJ; Miller KD
    J Neurosci; 1998 Aug; 18(15):5908-27. PubMed ID: 9671678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An emergent model of orientation selectivity in cat visual cortical simple cells.
    Somers DC; Nelson SB; Sur M
    J Neurosci; 1995 Aug; 15(8):5448-65. PubMed ID: 7643194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex.
    Chapman B; Zahs KR; Stryker MP
    J Neurosci; 1991 May; 11(5):1347-58. PubMed ID: 2027051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aberrant visual projections in the Siamese cat.
    Hubel DH; Wiesel TN
    J Physiol; 1971 Oct; 218(1):33-62. PubMed ID: 5130620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat.
    Martin KA; Whitteridge D
    J Physiol; 1984 Aug; 353():463-504. PubMed ID: 6481629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinogeniculate connections: A balancing act between connection specificity and receptive field diversity.
    Alonso JM; Yeh CI; Weng C; Stoelzel C
    Prog Brain Res; 2006; 154():3-13. PubMed ID: 17010700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GABA-induced inactivation of functionally characterized sites in cat striate cortex: effects on orientation tuning and direction selectivity.
    Crook JM; Kisvárday ZF; Eysel UT
    Vis Neurosci; 1997; 14(1):141-58. PubMed ID: 9057276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of receptive-field properties of X and Y ganglion cells with X and Y lateral geniculate cells in the cat.
    Bullier J; Norton TT
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):274-91. PubMed ID: 219159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Receptive-field properties and laminar distribution of X-like and Y-like simple cells in cat area 17.
    Mullikin WH; Jones JP; Palmer LA
    J Neurophysiol; 1984 Aug; 52(2):350-71. PubMed ID: 6481437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orientation selectivity of thalamic input to simple cells of cat visual cortex.
    Ferster D; Chung S; Wheat H
    Nature; 1996 Mar; 380(6571):249-52. PubMed ID: 8637573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic properties of recurrent inhibition in primary visual cortex: contrast and orientation dependence of contextual effects.
    Dragoi V; Sur M
    J Neurophysiol; 2000 Feb; 83(2):1019-30. PubMed ID: 10669513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isotropic connections generate functional asymmetrical behavior in visual cortical cells.
    Wörgötter F; Niebur E; Koch C
    J Neurophysiol; 1991 Aug; 66(2):444-59. PubMed ID: 1774581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of inhibitory gain and conductance fluctuations in a simple model for contrast-invariant orientation tuning in cat V1.
    Palmer SE; Miller KD
    J Neurophysiol; 2007 Jul; 98(1):63-78. PubMed ID: 17507506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.