These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 2066770)

  • 21. A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs.
    Miller KD
    J Neurosci; 1994 Jan; 14(1):409-41. PubMed ID: 8283248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationship between preferred orientation and receptive field position of neurons in cat striate cortex.
    Leventhal AG
    J Comp Neurol; 1983 Nov; 220(4):476-83. PubMed ID: 6643740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties.
    Mastronarde DN
    J Neurophysiol; 1987 Feb; 57(2):381-413. PubMed ID: 3559685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A cooperation and competition based simple cell receptive field model and study of feed-forward linear and nonlinear contributions to orientation selectivity.
    Bhaumik B; Mathur M
    J Comput Neurosci; 2003; 14(2):211-27. PubMed ID: 12567018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
    Naito T; Sadakane O; Okamoto M; Sato H
    Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Response properties of visual cortical neurons in cats reared in stroboscopic illumination.
    Kennedy H; Orban GA
    J Neurophysiol; 1983 Mar; 49(3):686-704. PubMed ID: 6834094
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of feedforward geniculate inputs in the generation of orientation selectivity in the cat's primary visual cortex.
    Viswanathan S; Jayakumar J; Vidyasagar TR
    J Physiol; 2011 May; 589(Pt 9):2349-61. PubMed ID: 21486788
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex.
    Pei X; Vidyasagar TR; Volgushev M; Creutzfeldt OD
    J Neurosci; 1994 Nov; 14(11 Pt 2):7130-40. PubMed ID: 7965103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of input from the lower cortical layers on the orientation tuning of upper layer V1 cells in a primate.
    Allison JD; Casagrande VA; Bonds AB
    Vis Neurosci; 1995; 12(2):309-20. PubMed ID: 7786852
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatiotemporal mechanisms in receptive fields of visual cortical simple cells: a model.
    Wörgötter F; Holt G
    J Neurophysiol; 1991 Mar; 65(3):494-510. PubMed ID: 2051191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity.
    Weliky M; Katz LC
    Nature; 1997 Apr; 386(6626):680-5. PubMed ID: 9109486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibitory contributions to spatiotemporal receptive-field structure and direction selectivity in simple cells of cat area 17.
    Murthy A; Humphrey AL
    J Neurophysiol; 1999 Mar; 81(3):1212-24. PubMed ID: 10085348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial summation and center-surround antagonism in the receptive field of single units in the dorsal lateral geniculate nucleus of cat: comparison with retinal input.
    Ruksenas O; Fjeld IT; Heggelund P
    Vis Neurosci; 2000; 17(6):855-70. PubMed ID: 11193102
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat.
    Sillito AM
    J Physiol; 1975 Sep; 250(2):305-29. PubMed ID: 1177144
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Linear and nonlinear contributions to orientation tuning of simple cells in the cat's striate cortex.
    Gardner JL; Anzai A; Ohzawa I; Freeman RD
    Vis Neurosci; 1999; 16(6):1115-21. PubMed ID: 10614591
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Length and width tuning of neurons in the cat's primary visual cortex.
    DeAngelis GC; Freeman RD; Ohzawa I
    J Neurophysiol; 1994 Jan; 71(1):347-74. PubMed ID: 8158236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Receptive field properties in the cat's area 17 in the absence of on-center geniculate input.
    Sherk H; Horton JC
    J Neurosci; 1984 Feb; 4(2):381-93. PubMed ID: 6699681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relative spike time coding and STDP-based orientation selectivity in the early visual system in natural continuous and saccadic vision: a computational model.
    Masquelier T
    J Comput Neurosci; 2012 Jun; 32(3):425-41. PubMed ID: 21938439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laminar differences in receptive field properties of cells in cat primary visual cortex.
    Gilbert CD
    J Physiol; 1977 Jun; 268(2):391-421. PubMed ID: 874916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Orientation-sensitive amacrine and ganglion cells in the rabbit retina.
    Bloomfield SA
    J Neurophysiol; 1994 May; 71(5):1672-91. PubMed ID: 8064341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.