These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 20667713)

  • 41. Effect of ZnO particles on activated sludge: role of particle dissolution.
    Liu G; Wang D; Wang J; Mendoza C
    Sci Total Environ; 2011 Jun; 409(14):2852-7. PubMed ID: 21529894
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Membrane bioreactors for final treatment of wastewater.
    Galil NI; Sheindorf Ch; Stahl N; Tenenbaum A; Levinsky Y
    Water Sci Technol; 2003; 48(8):103-10. PubMed ID: 14682576
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biological nutrient removal in membrane bioreactors: denitrification and phosphorus removal kinetics.
    Parco V; du Toit G; Wentzel M; Ekama G
    Water Sci Technol; 2007; 56(6):125-34. PubMed ID: 17898451
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phosphorus, copper and zinc in solid and liquid fractions from full-scale and laboratory-separated pig slurry.
    Popovic O; Hjorth M; Jensen LS
    Environ Technol; 2012 Sep; 33(16-18):2119-31. PubMed ID: 23240207
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Relevance of the sludge retention time (SRT) as design criteria for wastewater treatment plants for the removal of endocrine disruptors and pharmaceuticals from wastewater.
    Kreuzinger N; Clara M; Strenn B; Kroiss H
    Water Sci Technol; 2004; 50(5):149-56. PubMed ID: 15497842
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge.
    Sibrell PL; Montgomery GA; Ritenour KL; Tucker TW
    Water Res; 2009 May; 43(8):2240-50. PubMed ID: 19269663
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phosphorus removal from synthetic and municipal wastewater using spent alum sludge.
    Georgantas DA; Grigoropoulou HP
    Water Sci Technol; 2005; 52(10-11):525-32. PubMed ID: 16459830
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of sequencing batch reactor (SBR) and sequencing batch biofilm reactor (SBBR) for biological nutrient removal from simulated wastewater containing glucose as carbon source.
    Kumar BM; Chaudhari S
    Water Sci Technol; 2003; 48(3):73-9. PubMed ID: 14518857
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Non-filamentous sludge bulking caused by a deficiency of nitrogen in industrial wastewater treatment.
    Peng Y; Gao C; Wang S; Ozaki M; Takigawa A
    Water Sci Technol; 2003; 47(11):289-95. PubMed ID: 12906302
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of primary sedimentation on full-scale WWTP nutrient removal performance.
    Puig S; van Loosdrecht MC; Flameling AG; Colprim J; Meijer SC
    Water Res; 2010 Jun; 44(11):3375-84. PubMed ID: 20430413
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Two-stage UASB design enables activated-sludge free treatment of easily biodegradable wastewater.
    Diamantis V; Aivasidis A
    Bioprocess Biosyst Eng; 2010 Feb; 33(2):287-92. PubMed ID: 19418073
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biosorption of chromium, copper and zinc by wine-processing waste sludge: single and multi-component system study.
    Liu CC; Wang MK; Chiou CS; Li YS; Yang CY; Lin YA
    J Hazard Mater; 2009 Nov; 171(1-3):386-92. PubMed ID: 19586716
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process.
    Chen Y; Wang D; Zhu X; Zheng X; Feng L
    Environ Sci Technol; 2012 Nov; 46(22):12452-8. PubMed ID: 23110389
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibition on acidogenesis of dairy wastewater by zinc and copper.
    Yu HQ; Fang HP
    Environ Technol; 2001 Dec; 22(12):1459-65. PubMed ID: 11873881
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distributions of iron, manganese, copper and zinc in various composts and amended soils.
    Liu YY; Imai T; Ukita M; Sekine M; Higuchi T
    Environ Technol; 2003 Dec; 24(12):1517-25. PubMed ID: 14977148
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adsorption behavior of sulfamethazine in an activated sludge process treating swine wastewater.
    Ben W; Qiang Z; Yin X; Qu J; Pan X
    J Environ Sci (China); 2014 Aug; 26(8):1623-9. PubMed ID: 25108718
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Excess sludge production and costs due to phosphorus removal.
    Paul E; Laval ML; Sperandio M
    Environ Technol; 2001 Nov; 22(11):1363-71. PubMed ID: 11804358
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Zinc and copper distribution in swine wastewater treated by anaerobic digestion.
    Cestonaro do Amaral A; Kunz A; Radis Steinmetz RL; Justi KC
    J Environ Manage; 2014 Aug; 141():132-7. PubMed ID: 24794386
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Removal of Cu and Zn from swine raising wastewater using organic filters.
    de Matos AT; Brandão VS; Neves JC; Martinez MA
    Environ Technol; 2003 Feb; 24(2):171-8. PubMed ID: 12666787
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fate and behaviour of copper and zinc in secondary biological wastewater treatment processes: II. Removal at varying sludge age.
    Santos A; Barton P; Cartmell E; Coulon F; Crane RS; Hillis P; Lester JN; Stephenson T; Judd SJ
    Environ Technol; 2010 Jun; 31(7):725-43. PubMed ID: 20586235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.