BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 20667719)

  • 1. Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol.
    Yuan Z; Cheng S; Leitch M; Xu CC
    Bioresour Technol; 2010 Dec; 101(23):9308-13. PubMed ID: 20667719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrothermal degradation of lignin: products analysis for phenol formaldehyde adhesive synthesis.
    Yang S; Yuan TQ; Li MF; Sun RC
    Int J Biol Macromol; 2015 Jan; 72():54-62. PubMed ID: 25109457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquefaction of cornstalk in hot-compressed phenol-water medium to phenolic feedstock for the synthesis of phenol-formaldehyde resin.
    Wang M; Xu CC; Leitch M
    Bioresour Technol; 2009 Apr; 100(7):2305-7. PubMed ID: 19058960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Miscanthus giganteus lignin isolated by ethanol organosolv process under reflux condition.
    Bauer S; Sorek H; Mitchell VD; Ibáñez AB; Wemmer DE
    J Agric Food Chem; 2012 Aug; 60(33):8203-12. PubMed ID: 22823333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Process Parameters on Hydrolytic Treatment of Black Liquor for the Production of Low-Molecular-Weight Depolymerized Kraft Lignin.
    Ahmad Z; Mahmood N; Yuan Z; Paleologou M; Xu CC
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30261610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolytic depolymerization of hydrolysis lignin: Effects of catalysts and solvents.
    Mahmood N; Yuan Z; Schmidt J; Xu CC
    Bioresour Technol; 2015 Aug; 190():416-9. PubMed ID: 25936442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water.
    Fang Z; Sato T; Smith RL; Inomata H; Arai K; Kozinski JA
    Bioresour Technol; 2008 Jun; 99(9):3424-30. PubMed ID: 17881227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhomogeneities in the chemical structure of sugarcane bagasse lignin.
    Sun JX; Sun XF; Sun RC; Fowler P; Baird MS
    J Agric Food Chem; 2003 Nov; 51(23):6719-25. PubMed ID: 14582966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of liquefaction process and liquefied products from bamboo using different organic solvents.
    Yip J; Chen M; Szeto YS; Yan S
    Bioresour Technol; 2009 Dec; 100(24):6674-8. PubMed ID: 19679467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquefaction of lignin by polyethyleneglycol and glycerol.
    Jin Y; Ruan X; Cheng X; Lü Q
    Bioresour Technol; 2011 Feb; 102(3):3581-3. PubMed ID: 21050748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of polyols via direct hydrolysis of kraft lignin: effect of process parameters.
    Mahmood N; Yuan Z; Schmidt J; Charles Xu C
    Bioresour Technol; 2013 Jul; 139():13-20. PubMed ID: 23644065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal conversion of alkaline lignin and its structured derivatives to porous carbonized materials.
    Kijima M; Hirukawa T; Hanawa F; Hata T
    Bioresour Technol; 2011 May; 102(10):6279-85. PubMed ID: 21463939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decomposition behavior of hemicellulose and lignin in the step-change flow rate liquid hot water.
    Zhuang X; Yu Q; Wang W; Qi W; Wang Q; Tan X; Yuan Z
    Appl Biochem Biotechnol; 2012 Sep; 168(1):206-18. PubMed ID: 22270547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products.
    Pan X; Arato C; Gilkes N; Gregg D; Mabee W; Pye K; Xiao Z; Zhang X; Saddler J
    Biotechnol Bioeng; 2005 May; 90(4):473-81. PubMed ID: 15772945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogenolysis of lignins: influence of the pretreatment using microwave and ultrasound irradiations.
    Gonçalves AR; Schuchardt U
    Appl Biochem Biotechnol; 2002; 98-100():1213-9. PubMed ID: 12018241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic depolymerization of lignin in supercritical ethanol.
    Huang X; Korányi TI; Boot MD; Hensen EJ
    ChemSusChem; 2014 Aug; 7(8):2276-88. PubMed ID: 24867490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of kraft lignin under hydrothermal conditions.
    Zhou XF
    Bioresour Technol; 2014 Oct; 170():583-586. PubMed ID: 25176169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis.
    Thomsen MH; Thygesen A; Thomsen AB
    Bioresour Technol; 2008 Jul; 99(10):4221-8. PubMed ID: 17936621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organosolv extraction of lignin from hydrolyzed almond shells and application of the delta-value theory.
    Quesada-Medina J; López-Cremades FJ; Olivares-Carrillo P
    Bioresour Technol; 2010 Nov; 101(21):8252-60. PubMed ID: 20580226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of phenol-formaldehyde adhesives modified with enzymatic hydrolysis lignin.
    Jin Y; Cheng X; Zheng Z
    Bioresour Technol; 2010 Mar; 101(6):2046-8. PubMed ID: 19854642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.