BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 20667719)

  • 21. Mechanism on microwave-assisted acidic solvolysis of black-liquor lignin.
    Dong C; Feng C; Liu Q; Shen D; Xiao R
    Bioresour Technol; 2014 Jun; 162():136-41. PubMed ID: 24747392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A multi-analytical study of degradation of lignin in archaeological waterlogged wood.
    Colombini MP; Lucejko JJ; Modugno F; Orlandi M; Tolppa EL; Zoia L
    Talanta; 2009 Nov; 80(1):61-70. PubMed ID: 19782193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Disassembly of lignin and chemical recovery in supercritical water and p-cresol mixture. Studies on lignin model compounds.
    Okuda K; Ohara S; Umetsu M; Takami S; Adschiri T
    Bioresour Technol; 2008 Apr; 99(6):1846-52. PubMed ID: 17540557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulation of acid-catalysed organosolv fractionation of wheat straw.
    Sidiras D; Koukios E
    Bioresour Technol; 2004 Aug; 94(1):91-8. PubMed ID: 15081492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis.
    Tejado A; Peña C; Labidi J; Echeverria JM; Mondragon I
    Bioresour Technol; 2007 May; 98(8):1655-63. PubMed ID: 16843657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation and characterization of lignins extracted from flax shives using pressurized aqueous ethanol.
    Buranov AU; Ross KA; Mazza G
    Bioresour Technol; 2010 Oct; 101(19):7446-55. PubMed ID: 20537893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds.
    Kim SJ; Jung SH; Kim JS
    Bioresour Technol; 2010 Dec; 101(23):9294-300. PubMed ID: 20667720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds.
    Tymchyshyn M; Xu CC
    Bioresour Technol; 2010 Apr; 101(7):2483-90. PubMed ID: 20031393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of various reaction parameters on solvolytical depolymerization of lignin in sub- and supercritical ethanol.
    Kim JY; Oh S; Hwang H; Cho TS; Choi IG; Choi JW
    Chemosphere; 2013 Nov; 93(9):1755-64. PubMed ID: 23820536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stability and degradation profiles of Spantide II in aqueous solutions.
    Kikwai L; Babu RJ; Kanikkannan N; Singh M
    Eur J Pharm Sci; 2006 Feb; 27(2-3):158-66. PubMed ID: 16266798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of autohydrolysis of Miscanthus x giganteus on lignin structure and organosolv delignification.
    El Hage R; Chrusciel L; Desharnais L; Brosse N
    Bioresour Technol; 2010 Dec; 101(23):9321-9. PubMed ID: 20655207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of structural changes of lignin during the autohydrolysis and organosolv pretreatment on Eucommia ulmoides Oliver for an effective enzymatic hydrolysis.
    Zhu MQ; Wen JL; Su YQ; Wei Q; Sun RC
    Bioresour Technol; 2015 Jun; 185():378-85. PubMed ID: 25754353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The degradation of salbutamol in ethanolic solutions.
    Cope M; Bautista-Parra F
    J Pharm Biomed Anal; 2010 Jun; 52(2):210-5. PubMed ID: 20117899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of primary thermal degradation features of lignocellulosic biomass after removal of inorganic metals by diverse solvents.
    Eom IY; Kim KH; Kim JY; Lee SM; Yeo HM; Choi IG; Choi JW
    Bioresour Technol; 2011 Feb; 102(3):3437-44. PubMed ID: 21074420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks.
    Silverstein RA; Chen Y; Sharma-Shivappa RR; Boyette MD; Osborne J
    Bioresour Technol; 2007 Nov; 98(16):3000-11. PubMed ID: 17158046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative study of alkali- and acidic organic solvent-soluble hemicellulosic polysaccharides from sugarcane bagasse.
    Xu F; Sun JX; Liu CF; Sun RC
    Carbohydr Res; 2006 Feb; 341(2):253-61. PubMed ID: 16313892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of lignin-rich residues remaining after continuous super-critical water hydrolysis of poplar wood (Populus albaglandulosa) for conversion to fermentable sugars.
    Moon SJ; Eom IY; Kim JY; Kim TS; Lee SM; Choi IG; Choi JW
    Bioresour Technol; 2011 May; 102(10):5912-6. PubMed ID: 21435868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields.
    Pan X; Gilkes N; Kadla J; Pye K; Saka S; Gregg D; Ehara K; Xie D; Lam D; Saddler J
    Biotechnol Bioeng; 2006 Aug; 94(5):851-61. PubMed ID: 16523526
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioethanol production from bamboo with alkali-catalyzed liquid hot water pretreatment.
    Yang H; Shi Z; Xu G; Qin Y; Deng J; Yang J
    Bioresour Technol; 2019 Feb; 274():261-266. PubMed ID: 30529330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature.
    Zhao Y; Wang Y; Zhu JY; Ragauskas A; Deng Y
    Biotechnol Bioeng; 2008 Apr; 99(6):1320-8. PubMed ID: 18023037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.