BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20667816)

  • 21. Ultrastructural study of mouse renal glomeruli under various hemodynamic conditions by an "in vivo cryotechnique".
    Ohno S; Kato Y; Xiang T; Terada N; Takayama I; Fujii Y; Baba T
    Ital J Anat Embryol; 2001; 106(2 Suppl 1):431-8. PubMed ID: 11729986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphological study of erythrocyte shapes in red pulp of mouse spleens revealed by an in vivo cryotechnique.
    Xue M; Baba T; Terada N; Kato Y; Fujii Y; Ohno S
    Histol Histopathol; 2001 Jan; 16(1):123-9. PubMed ID: 11193186
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrastructural studies and immunolocalization of enamel proteins in rodent secretory stage ameloblasts processed by various cryofixation methods.
    Nanci A; Kawaguchi H; Kogaya Y
    Anat Rec; 1994 Apr; 238(4):425-36. PubMed ID: 8192240
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of injected fluorescence-conjugated IgG in living mouse organs using "in vivo cryotechnique" with freeze-substitution.
    Terada N; Ohno N; Li Z; Fujii Y; Baba T; Ohno S
    Microsc Res Tech; 2005 Mar; 66(4):173-8. PubMed ID: 15889425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immunolocalization of serum proteins in xenografted mouse model of human tumor cells by various cryotechniques.
    Bai Y; Ohno N; Terada N; Saitoh S; Nakazawa T; Nakamura N; Katoh R; Ohno S
    Histol Histopathol; 2009 Jun; 24(6):717-28. PubMed ID: 19337970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunohistochemical study of mouse sciatic nerves under various stretching conditions with "in vivo cryotechnique".
    Kamijo A; Saitoh Y; Ohno N; Ohno S; Terada N
    J Neurosci Methods; 2014 Apr; 227():181-8. PubMed ID: 24631319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Involvement of follicular basement membrane and vascular endothelium in blood follicle barrier formation of mice revealed by 'in vivo cryotechnique'.
    Zhou H; Ohno N; Terada N; Saitoh S; Fujii Y; Ohno S
    Reproduction; 2007 Aug; 134(2):307-17. PubMed ID: 17660240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Character, distribution and biological implications of ice crystallization in cryopreserved rabbit ovarian tissue revealed by cryo-scanning electron microscopy.
    Gosden RG; Yin H; Bodine RJ; Morris GJ
    Hum Reprod; 2010 Feb; 25(2):470-8. PubMed ID: 19933523
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transmission electron microscopy of cartilage and bone.
    Keene DR; Tufa SF
    Methods Cell Biol; 2010; 96():443-73. PubMed ID: 20869534
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immunohistochemical detection of phosphorylated rhodopsin in light-exposed retina of living mouse with in vivo cryotechnique.
    Terada N; Ohno N; Ohguro H; Li Z; Ohno S
    J Histochem Cytochem; 2006 Apr; 54(4):479-86. PubMed ID: 16401695
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fine structure of Tritrichomonas foetus as seen using cryotechniques.
    Benchimol M
    Microsc Res Tech; 1994 Sep; 29(1):37-46. PubMed ID: 8000083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Morphological study by an 'in vivo cryotechnique' of the shape of erythrocytes circulating in large blood vessels.
    Xue M; Kato Y; Terada N; Fujii Y; Baba T; Ohno S
    J Anat; 1998 Jul; 193 ( Pt 1)(Pt 1):73-9. PubMed ID: 9758138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of cells and tissues for immuno EM.
    Webster P; Schwarz H; Griffiths G
    Methods Cell Biol; 2008; 88():45-58. PubMed ID: 18617027
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scanning electron microscopic study of the renal glomerulus by an in vivo cryotechnique combined with freeze-substitution.
    Yu Y; Leng CG; Terada N; Ohno S
    J Anat; 1998 May; 192 ( Pt 4)(Pt 4):595-603. PubMed ID: 9723986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ethane-freezing/methanol-fixation of cell monolayers: a procedure for improved preservation of structure and antigenicity for light and electron microscopies.
    Neuhaus EM; Horstmann H; Almers W; Maniak M; Soldati T
    J Struct Biol; 1998; 121(3):326-42. PubMed ID: 9704504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The relevance of ice crystal formation for the cryopreservation of tissues and organs.
    Pegg DE
    Cryobiology; 2010 Jul; 60(3 Suppl):S36-44. PubMed ID: 20159009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-pressure freezing is a powerful tool for visualization of Schizosaccharomyces pombe cells: ultra-low temperature and low-voltage scanning electron microscopy and immunoelectron microscopy.
    Osumi M; Konomi M; Sugawara T; Takagi T; Baba M
    J Electron Microsc (Tokyo); 2006 Apr; 55(2):75-88. PubMed ID: 16782736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-Pressurized Rapid Freezing as Cryo-Fixation Method for Electron Microscopy and Cryopreservation of Living Cells.
    Huebinger J; Grabenbauer M
    Curr Protoc Cell Biol; 2018 Jun; 79(1):e47. PubMed ID: 29924483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of "in vivo cryotechnique" to detect erythrocyte oxygen saturation in frozen mouse tissues with confocal Raman cryomicroscopy.
    Terada N; Ohno N; Saitoh S; Ohno S
    J Struct Biol; 2008 Aug; 163(2):147-54. PubMed ID: 18571433
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-pressure freezing, chemical fixation and freeze-substitution for immuno-electron microscopy.
    Mühlfeld C
    Methods Mol Biol; 2010; 611():87-101. PubMed ID: 19960324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.