These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 20667844)

  • 1. Epidemics in networks of spatially correlated three-dimensional root-branching structures.
    Handford TP; Pérez-Reche FJ; Taraskin SN; Costa Lda F; Miazaki M; Neri FM; Gilligan CA
    J R Soc Interface; 2011 Mar; 8(56):423-34. PubMed ID: 20667844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complexity and anisotropy in host morphology make populations less susceptible to epidemic outbreaks.
    Pérez-Reche FJ; Taraskin SN; Costa Lda F; Neri FM; Gilligan CA
    J R Soc Interface; 2010 Jul; 7(48):1083-92. PubMed ID: 20075039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneity in susceptible-infected-removed (SIR) epidemics on lattices.
    Neri FM; Pérez-Reche FJ; Taraskin SN; Gilligan CA
    J R Soc Interface; 2011 Feb; 8(55):201-9. PubMed ID: 20630880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Host growth can cause invasive spread of crops by soilborne pathogens.
    Leclerc M; Doré T; Gilligan CA; Lucas P; Filipe JA
    PLoS One; 2013; 8(5):e63003. PubMed ID: 23667560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epidemic thresholds in dynamic contact networks.
    Volz E; Meyers LA
    J R Soc Interface; 2009 Mar; 6(32):233-41. PubMed ID: 18664429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of invasion from the early stage of an epidemic.
    Pérez-Reche FJ; Neri FM; Taraskin SN; Gilligan CA
    J R Soc Interface; 2012 Sep; 9(74):2085-96. PubMed ID: 22513723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Percolation on heterogeneous networks as a model for epidemics.
    Sander LM; Warren CP; Sokolov IM; Simon C; Koopman J
    Math Biosci; 2002; 180():293-305. PubMed ID: 12387929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epidemics on plants: Modeling long-range dispersal on spatially embedded networks.
    Arias JH; Gómez-Gardeñes J; Meloni S; Estrada E
    J Theor Biol; 2018 Sep; 453():1-13. PubMed ID: 29738720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of clustering on interacting epidemics.
    Wang B; Cao L; Suzuki H; Aihara K
    J Theor Biol; 2012 Jul; 304():121-30. PubMed ID: 22554949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How does the resistance threshold in spatially explicit epidemic dynamics depend on the basic reproductive ratio and spatial correlation of crop genotypes?
    Suzuki SU; Sasaki A
    J Theor Biol; 2011 May; 276(1):117-25. PubMed ID: 21300071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Period dependent branching process and its applications in epidemiology.
    Fathi Vajargah B; Moradi M
    Infect Genet Evol; 2011 Aug; 11(6):1225-8. PubMed ID: 21397734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks.
    Van Mieghem P; van de Bovenkamp R
    Phys Rev Lett; 2013 Mar; 110(10):108701. PubMed ID: 23521310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical approximation for invasion and endemic thresholds, and the optimal control of epidemics in spatially explicit individual-based models.
    Suprunenko YF; Cornell SJ; Gilligan CA
    J R Soc Interface; 2021 Mar; 18(176):20200966. PubMed ID: 33784882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Second look at the spread of epidemics on networks.
    Kenah E; Robins JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036113. PubMed ID: 17930312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First report of
    Hajihassani A; Ye W; Hampton BB
    J Nematol; 2019; 51():1-3. PubMed ID: 31088018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Edge-based epidemic spreading in degree-correlated complex networks.
    Wang Y; Ma J; Cao J; Li L
    J Theor Biol; 2018 Oct; 454():164-181. PubMed ID: 29885412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Percolation-based risk index for pathogen invasion: application to soilborne disease in propagation systems.
    Poggi S; Neri FM; Deytieux V; Bates A; Otten W; Gilligan CA; Bailey DJ
    Phytopathology; 2013 Oct; 103(10):1012-9. PubMed ID: 23819548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and analysis of disease-induced host growth in the epidemiology of take-all.
    Bailey DJ; Gilligan CA
    Phytopathology; 2004 May; 94(5):535-40. PubMed ID: 18943774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epidemics and percolation in small-world networks.
    Moore C; Newman ME
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5 Pt B):5678-82. PubMed ID: 11031626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.