These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 20668199)

  • 1. Neural correlates of motor learning in the vestibulo-ocular reflex: dynamic regulation of multimodal integration in the macaque vestibular system.
    Sadeghi SG; Minor LB; Cullen KE
    J Neurosci; 2010 Jul; 30(30):10158-68. PubMed ID: 20668199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimodal integration after unilateral labyrinthine lesion: single vestibular nuclei neuron responses and implications for postural compensation.
    Sadeghi SG; Minor LB; Cullen KE
    J Neurophysiol; 2011 Feb; 105(2):661-73. PubMed ID: 21148096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The neurophysiological substrate for the cervico-ocular reflex in the squirrel monkey.
    Gdowski GT; Belton T; McCrea RA
    Exp Brain Res; 2001 Oct; 140(3):253-64. PubMed ID: 11681301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural correlates of sensory substitution in vestibular pathways following complete vestibular loss.
    Sadeghi SG; Minor LB; Cullen KE
    J Neurosci; 2012 Oct; 32(42):14685-95. PubMed ID: 23077054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective processing of vestibular reafference during self-generated head motion.
    Roy JE; Cullen KE
    J Neurosci; 2001 Mar; 21(6):2131-42. PubMed ID: 11245697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vestibuloocular reflex signal modulation during voluntary and passive head movements.
    Roy JE; Cullen KE
    J Neurophysiol; 2002 May; 87(5):2337-57. PubMed ID: 11976372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological properties of vestibular primary afferents that mediate motor learning and normal performance of the vestibulo-ocular reflex in monkeys.
    Brontë-Stewart HM; Lisberger SG
    J Neurosci; 1994 Mar; 14(3 Pt 1):1290-308. PubMed ID: 8120625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mammalian efferent vestibular system plays a crucial role in vestibulo-ocular reflex compensation after unilateral labyrinthectomy.
    Hübner PP; Khan SI; Migliaccio AA
    J Neurophysiol; 2017 Apr; 117(4):1553-1568. PubMed ID: 28077670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pursuit--vestibular interactions in brain stem neurons during rotation and translation.
    Meng H; Green AM; Dickman JD; Angelaki DE
    J Neurophysiol; 2005 Jun; 93(6):3418-33. PubMed ID: 15647394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vestibular inputs to brain stem neurons that participate in motor learning in the primate vestibuloocular reflex.
    Broussard DM; Lisberger SG
    J Neurophysiol; 1992 Nov; 68(5):1906-9. PubMed ID: 1479453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural substrates underlying vestibular compensation: contribution of peripheral versus central processing.
    Cullen KE; Minor LB; Beraneck M; Sadeghi SG
    J Vestib Res; 2009; 19(5-6):171-82. PubMed ID: 20495234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual-vestibular interactions during vestibular compensation: role of the pretectal not in horizontal VOR recovery after hemilabyrinthectomy in rhesus monkey.
    Stewart CM; Mustari MJ; Perachio AA
    J Neurophysiol; 2005 Oct; 94(4):2653-66. PubMed ID: 15758055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of vestibular signals into motor commands in the vestibuloocular reflex pathways of monkeys.
    Ramachandran R; Lisberger SG
    J Neurophysiol; 2006 Sep; 96(3):1061-74. PubMed ID: 16760348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimodal integration in rostral fastigial nucleus provides an estimate of body movement.
    Brooks JX; Cullen KE
    J Neurosci; 2009 Aug; 29(34):10499-511. PubMed ID: 19710303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling non-linearities in the vestibulo-ocular reflex (VOR) after unilateral or bilateral loss of peripheral vestibular function.
    Galiana HL; Smith HL; Katsarkas A
    Exp Brain Res; 2001 Apr; 137(3-4):369-86. PubMed ID: 11355383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain stem pursuit pathways: dissociating visual, vestibular, and proprioceptive inputs during combined eye-head gaze tracking.
    Roy JE; Cullen KE
    J Neurophysiol; 2003 Jul; 90(1):271-90. PubMed ID: 12843311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural substrate of modified and unmodified pathways for learning in monkey vestibuloocular reflex.
    Ramachandran R; Lisberger SG
    J Neurophysiol; 2008 Oct; 100(4):1868-78. PubMed ID: 18667542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internal models of self-motion: computations that suppress vestibular reafference in early vestibular processing.
    Cullen KE; Brooks JX; Jamali M; Carriot J; Massot C
    Exp Brain Res; 2011 May; 210(3-4):377-88. PubMed ID: 21286693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Timing of low frequency responses of anterior and posterior canal vestibulo-ocular neurons in alert cats.
    Brettler SC; Baker JF
    Exp Brain Res; 2003 Mar; 149(2):167-73. PubMed ID: 12610684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications of noise and neural heterogeneity for vestibulo-ocular reflex fidelity.
    Hospedales TM; van Rossum MC; Graham BP; Dutia MB
    Neural Comput; 2008 Mar; 20(3):756-78. PubMed ID: 18045014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.