BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 20668274)

  • 21. Early synaptogenesis in vitro: role of axon target distance.
    van den Pol AN; Obrietan K; Belousov AB; Yang Y; Heller HC
    J Comp Neurol; 1998 Oct; 399(4):541-60. PubMed ID: 9741482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brain-derived neurotrophic factor differentially regulates excitatory and inhibitory synaptic transmission in hippocampal cultures.
    Bolton MM; Pittman AJ; Lo DC
    J Neurosci; 2000 May; 20(9):3221-32. PubMed ID: 10777787
    [TBL] [Abstract][Full Text] [Related]  

  • 23. BDNF and NT-4 differentiate two pathways in the modulation of neuropeptide protein levels in postnatal hippocampal interneurons.
    Marty S; Onténiente B
    Eur J Neurosci; 1999 May; 11(5):1647-56. PubMed ID: 10215918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chronaxie Measurements in Patterned Neuronal Cultures from Rat Hippocampus.
    Stern S; Agudelo-Toro A; Rotem A; Moses E; Neef A
    PLoS One; 2015; 10(7):e0132577. PubMed ID: 26186201
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hippocampal stem cells differentiate into excitatory and inhibitory neurons.
    Vicario-Abejón C; Collin C; Tsoulfas P; McKay RD
    Eur J Neurosci; 2000 Feb; 12(2):677-88. PubMed ID: 10712648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neurotrophin 3 potentiates neuronal activity and inhibits gamma-aminobutyratergic synaptic transmission in cortical neurons.
    Kim HG; Wang T; Olafsson P; Lu B
    Proc Natl Acad Sci U S A; 1994 Dec; 91(25):12341-5. PubMed ID: 7991629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activation of early silent synapses by spontaneous synchronous network activity limits the range of neocortical connections.
    Voigt T; Opitz T; de Lima AD
    J Neurosci; 2005 May; 25(18):4605-15. PubMed ID: 15872108
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brain-derived neurotrophic factor differentially modulates excitability of two classes of hippocampal output neurons.
    Graves AR; Moore SJ; Spruston N; Tryba AK; Kaczorowski CC
    J Neurophysiol; 2016 Aug; 116(2):466-71. PubMed ID: 27146982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BDNF enhances neuronal growth and synaptic activity in hippocampal cell cultures.
    Bartrup JT; Moorman JM; Newberry NR
    Neuroreport; 1997 Dec; 8(17):3791-4. PubMed ID: 9427372
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complementary actions of BDNF and neurotrophin-3 on the firing patterns and synaptic composition of motoneurons.
    Davis-López de Carrizosa MA; Morado-Díaz CJ; Tena JJ; Benítez-Temiño B; Pecero ML; Morcuende SR; de la Cruz RR; Pastor AM
    J Neurosci; 2009 Jan; 29(2):575-87. PubMed ID: 19144857
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BDNF mobilizes synaptic vesicles and enhances synapse formation by disrupting cadherin-beta-catenin interactions.
    Bamji SX; Rico B; Kimes N; Reichardt LF
    J Cell Biol; 2006 Jul; 174(2):289-99. PubMed ID: 16831887
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cultured rat hippocampal neural progenitors generate spontaneously active neural networks.
    Mistry SK; Keefer EW; Cunningham BA; Edelman GM; Crossin KL
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1621-6. PubMed ID: 11818538
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The novel mitochondria activator, 10-ethyl-3-methylpyrimido[4,5-b]quinoline-2,4(3H,10H)-dione (TND1128), promotes the development of hippocampal neuronal morphology.
    Katsurabayashi S; Oyabu K; Kubota K; Watanabe T; Nagamatsu T; Akaike N; Iwasaki K
    Biochem Biophys Res Commun; 2021 Jun; 560():146-151. PubMed ID: 33989906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-range synchrony and emergence of neural reentry.
    Keren H; Marom S
    Sci Rep; 2016 Nov; 6():36837. PubMed ID: 27874019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Back-propagating action potential: A key contributor in activity-dependent dendritic release of BDNF.
    Kuczewski N; Porcher C; Lessmann V; Medina I; Gaiarsa JL
    Commun Integr Biol; 2008; 1(2):153-5. PubMed ID: 19704877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rich dynamics and functional organization on topographically designed neuronal networks
    Montalà-Flaquer M; López-León CF; Tornero D; Houben AM; Fardet T; Monceau P; Bottani S; Soriano J
    iScience; 2022 Dec; 25(12):105680. PubMed ID: 36567712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BDNF and NT-3 increase velocity of activity front propagation in unidimensional hippocampal cultures.
    Jacobi S; Soriano J; Moses E
    J Neurophysiol; 2010 Dec; 104(6):2932-9. PubMed ID: 20668274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BDNF and NT-3 increase excitatory input connectivity in rat hippocampal cultures.
    Jacobi S; Soriano J; Segal M; Moses E
    Eur J Neurosci; 2009 Sep; 30(6):998-1010. PubMed ID: 19723292
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activity- and BDNF-induced plasticity of miniature synaptic currents in ES cell-derived neurons integrated in a neocortical network.
    Copi A; Jüngling K; Gottmann K
    J Neurophysiol; 2005 Dec; 94(6):4538-43. PubMed ID: 16293594
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neurotrophins act at presynaptic terminals to activate synapses among cultured hippocampal neurons.
    Collin C; Vicario-Abejon C; Rubio ME; Wenthold RJ; McKay RD; Segal M
    Eur J Neurosci; 2001 Apr; 13(7):1273-82. PubMed ID: 11298787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.