These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Relationship between inhibition of cardiac muscle phosphodiesterases, changes in cyclic nucleotide levels, and contractile response for CI-914 and other novel cardiotonics. Weishaar RE; Quade MM; Schenden JA; Evans DB J Cyclic Nucleotide Protein Phosphor Res; 1985; 10(6):551-64. PubMed ID: 3003170 [TBL] [Abstract][Full Text] [Related]
8. Release of prostaglandins from the superfused frog ventricle during the development of the hypodynamic state [proceedings]. Flitney FW; Singh J J Physiol; 1978 Dec; 285():18P-19P. PubMed ID: 745067 [No Abstract] [Full Text] [Related]
9. Inotropic responses of the frog ventricle to dibutyryl cyclic AMP and 8-bromo cyclic GMP and related changes in endogenous cyclic nucleotide levels. Singh J; Flitney FW Biochem Pharmacol; 1981 Jun; 30(12):1475-81. PubMed ID: 6268101 [No Abstract] [Full Text] [Related]
10. Neurotransmitter and cyclic nucleotide modulation of frog cardiac contractility. McAfee DA; Whiting GJ; Siegel B J Mol Cell Cardiol; 1978 Aug; 10(8):705-16. PubMed ID: 212563 [No Abstract] [Full Text] [Related]
11. Evidence that cyclic GMP may regulate cyclic AMP metabolism in the isolated frog ventricle. Flitney FW; Singh J J Mol Cell Cardiol; 1981 Nov; 13(11):963-79. PubMed ID: 6275088 [No Abstract] [Full Text] [Related]
12. Inotropic responses of the frog ventricle to adenosine triphosphate and related changes in endogenous cyclic nucleotides. Flitney FW; Singh J J Physiol; 1980 Jul; 304():21-42. PubMed ID: 6255141 [TBL] [Abstract][Full Text] [Related]
13. Endogenous 3',5'-cyclic nucleotides, calcium and the regulation of myocardial contractility: a hypothesis [proceedings]. Flitney FW; Lamb JF; Singh J J Physiol; 1979 Jul; 292():70P-71P. PubMed ID: 226680 [No Abstract] [Full Text] [Related]
14. [Effects of amrinone on contractile activities, cyclic nucleotides and adenyl cyclase activity of cultured rat heart cells]. Li XJ; Wang DS; Chen XZ Zhongguo Yao Li Xue Bao; 1987 Sep; 8(5):429-33. PubMed ID: 2835886 [No Abstract] [Full Text] [Related]
15. Action of trapidil on the heart contractility: relationship to the cyclic nucleotide metabolism. Bartel S; Reese D; Krause EG Biomed Biochim Acta; 1987; 46(8-9):S472-6. PubMed ID: 2829868 [TBL] [Abstract][Full Text] [Related]
16. Oscillation of cyclic AMP with the heart cycle of the canine myocardium in situ. Krause EG; Bartel S; Freier W; Warbanow W; Gerber K; Ludecke J; Obst D Biomed Biochim Acta; 1986; 45(1-2):S205-10. PubMed ID: 3008710 [TBL] [Abstract][Full Text] [Related]
17. Effects of exogenous neurotransmitters on contractility and cyclic nucleotide metabolism in the isolated frog ventricle. Singh J; Flitney FW Biochem Pharmacol; 1983 Apr; 32(7):1169-74. PubMed ID: 6303351 [TBL] [Abstract][Full Text] [Related]
18. Cyclic GMP-dependent protein kinase activation in the absence of negative inotropic effects in the rat ventricle. MacDonell KL; Diamond J Br J Pharmacol; 1997 Dec; 122(7):1425-35. PubMed ID: 9421291 [TBL] [Abstract][Full Text] [Related]
19. Cyclic changes in levels of cyclic AMP and cyclic GMP in frog myocardium during the cardiac cycle. Wollenberger A; Babskii EB; Krause EG; Genz S; Blohm D; Bogdanova EV Biochem Biophys Res Commun; 1973 Nov; 55(2):446-52. PubMed ID: 4358402 [No Abstract] [Full Text] [Related]
20. Effects of uridine triphosphate on contractility, cyclic nucleotide levels and membrane potential in the isolated frog ventricle. Singh J; Flitney FW Pflugers Arch; 1981 Nov; 392(1):1-6. PubMed ID: 6275340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]