These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 20668727)
1. Formation and structure of the potassium complex of valinomycin in solution studied by Raman optical activity spectroscopy. Yamamoto S; Straka M; Watarai H; Bour P Phys Chem Chem Phys; 2010 Sep; 12(36):11021-32. PubMed ID: 20668727 [TBL] [Abstract][Full Text] [Related]
2. Monitoring the backbone conformation of valinomycin by Raman optical activity. Yamamoto S; Watarai H; Bouř P Chemphyschem; 2011 Jun; 12(8):1509-18. PubMed ID: 21384485 [TBL] [Abstract][Full Text] [Related]
3. Interpretation of Raman and Raman optical activity spectra of a flexible sugar derivative, the gluconic acid anion. Kaminský J; Kapitán J; Baumruk V; Bednárová L; Bour P J Phys Chem A; 2009 Apr; 113(15):3594-601. PubMed ID: 19309136 [TBL] [Abstract][Full Text] [Related]
4. Structure and vibrational motion of insulin from Raman optical activity spectra. Yamamoto S; Kaminský J; Bouř P Anal Chem; 2012 Mar; 84(5):2440-51. PubMed ID: 22263577 [TBL] [Abstract][Full Text] [Related]
5. L-alanyl-L-alanine conformational changes induced by pH as monitored by the Raman optical activity spectra. Sebek J; Kapitán J; Sebestík J; Baumruk V; Bour P J Phys Chem A; 2009 Jul; 113(27):7760-8. PubMed ID: 19527037 [TBL] [Abstract][Full Text] [Related]
6. Conformational flexibility of L-alanine zwitterion determines shapes of Raman and Raman optical activity spectral bands. Kapitan J; Baumruk V; Kopecký V; Bour P J Phys Chem A; 2006 Apr; 110(14):4689-96. PubMed ID: 16599435 [TBL] [Abstract][Full Text] [Related]
7. Side chain and flexibility contributions to the Raman optical activity spectra of a model cyclic hexapeptide. Hudecová J; Kapitán J; Baumruk V; Hammer RP; Keiderling TA; Bour P J Phys Chem A; 2010 Jul; 114(28):7642-51. PubMed ID: 20578775 [TBL] [Abstract][Full Text] [Related]
8. Influence of the lipid environment on valinomycin structure and cation complex formation. Halsey CM; Benham DA; JiJi RD; Cooley JW Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():200-6. PubMed ID: 22683555 [TBL] [Abstract][Full Text] [Related]
9. Comparison of quantitative conformer analyses by nuclear magnetic resonance and Raman optical activity spectra for model dipeptides. Budesínský M; Danecek P; Bednárová L; Kapitán J; Baumruk V; Bour P J Phys Chem A; 2008 Sep; 112(37):8633-40. PubMed ID: 18729424 [TBL] [Abstract][Full Text] [Related]
10. Conformational properties of the Pro-Gly motif in the D-Ala-l-Pro-Gly-D-Ala model peptide explored by a statistical analysis of the NMR, Raman, and Raman optical activity spectra. Budesínský M; Sebestík J; Bednarova L; Baumruk V; Safarík M; Bour P J Org Chem; 2008 Feb; 73(4):1481-9. PubMed ID: 18205382 [TBL] [Abstract][Full Text] [Related]
11. UVRR spectroscopic studies of valinomycin complex formation in different solvents. Ozdemir A; Lednev IK; Asher SA Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jan; 61(1-2):19-26. PubMed ID: 15556416 [TBL] [Abstract][Full Text] [Related]
12. Demonstration of the ring conformation in polyproline by the Raman optical activity. Kapitán J; Baumruk V; Bour P J Am Chem Soc; 2006 Feb; 128(7):2438-43. PubMed ID: 16478200 [TBL] [Abstract][Full Text] [Related]
13. Proline zwitterion dynamics in solution, glass, and crystalline state. Kapitán J; Baumruk V; Kopecký V; Pohl R; Bour P J Am Chem Soc; 2006 Oct; 128(41):13451-62. PubMed ID: 17031958 [TBL] [Abstract][Full Text] [Related]
15. Explicit versus implicit solvent modeling of Raman optical activity spectra. Hopmann KH; Ruud K; Pecul M; Kudelski A; Dračínský M; Bouř P J Phys Chem B; 2011 Apr; 115(14):4128-37. PubMed ID: 21417248 [TBL] [Abstract][Full Text] [Related]
16. Vibrational spectroscopic studies and density functional theory calculations of speciation in the CO2-water system. Rudolph WW; Fischer D; Irmer G Appl Spectrosc; 2006 Feb; 60(2):130-44. PubMed ID: 16542564 [TBL] [Abstract][Full Text] [Related]
17. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions. Danecek P; Kapitán J; Baumruk V; Bednárová L; Kopecký V; Bour P J Chem Phys; 2007 Jun; 126(22):224513. PubMed ID: 17581069 [TBL] [Abstract][Full Text] [Related]
18. Theoretical study of the Raman optical activity spectra of 3(10)-helical polypeptides. Jacob CR Chemphyschem; 2011 Dec; 12(17):3291-306. PubMed ID: 22052852 [TBL] [Abstract][Full Text] [Related]
19. Vibrational Raman optical activity of alpha-lactalbumin: comparison with lysozyme, and evidence for native tertiary folds in molten globule states. Wilson G; Ford SJ; Cooper A; Hecht L; Wen ZQ; Barron LD J Mol Biol; 1995 Dec; 254(4):747-60. PubMed ID: 7500347 [TBL] [Abstract][Full Text] [Related]
20. Raman optical activity of filamentous bacteriophages: hydration of alpha-helices. Blanch EW; Bell AF; Hecht L; Day LA; Barron LD J Mol Biol; 1999 Jul; 290(1):1-7. PubMed ID: 10388553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]