BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 20668761)

  • 1. High water mobility on the ice-binding surface of a hyperactive antifreeze protein.
    Modig K; Qvist J; Marshall CB; Davies PL; Halle B
    Phys Chem Chem Phys; 2010 Sep; 12(35):10189-97. PubMed ID: 20668761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein.
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2014 May; 118(18):4743-52. PubMed ID: 24725212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When are antifreeze proteins in solution essential for ice growth inhibition?
    Drori R; Davies PL; Braslavsky I
    Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of Tenebrio Molitor Antifreeze Protein with Ice Crystal: Insights from Molecular Dynamics Simulations.
    Ramya L; Ramakrishnan V
    Mol Inform; 2016 Jul; 35(6-7):268-77. PubMed ID: 27492241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function of antifreeze proteins.
    Davies PL; Baardsnes J; Kuiper MJ; Walker VK
    Philos Trans R Soc Lond B Biol Sci; 2002 Jul; 357(1423):927-35. PubMed ID: 12171656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of ice-like water structure on the surface of an antifreeze protein.
    Smolin N; Daggett V
    J Phys Chem B; 2008 May; 112(19):6193-202. PubMed ID: 18336017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Polar and Nonpolar Groups in the Activity of Antifreeze Proteins: A Molecular Dynamics Simulation Study.
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2018 Oct; 122(40):9389-9398. PubMed ID: 30222341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why does insect antifreeze protein from Tenebrio molitor produce pyramidal ice crystallites?
    Strom CS; Liu XY; Jia Z
    Biophys J; 2005 Oct; 89(4):2618-27. PubMed ID: 16055536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen bonding on the ice-binding face of a beta-helical antifreeze protein indicated by amide proton NMR chemical shifts.
    Daley ME; Graether SP; Sykes BD
    Biochemistry; 2004 Oct; 43(41):13012-7. PubMed ID: 15476394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational study on the function of water within a beta-helix antifreeze protein dimer and in the process of ice-protein binding.
    Yang Z; Zhou Y; Liu K; Cheng Y; Liu R; Chen G; Jia Z
    Biophys J; 2003 Oct; 85(4):2599-605. PubMed ID: 14507722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein.
    Liou YC; Tocilj A; Davies PL; Jia Z
    Nature; 2000 Jul; 406(6793):322-4. PubMed ID: 10917536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins.
    Li QZ; Yeh Y; Liu JJ; Feeney RE; Krishnan VV
    J Chem Phys; 2006 May; 124(20):204702. PubMed ID: 16774359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth.
    Celik Y; Drori R; Pertaya-Braun N; Altan A; Barton T; Bar-Dolev M; Groisman A; Davies PL; Braslavsky I
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1309-14. PubMed ID: 23300286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures, dynamics, and hydrogen-bond interactions of antifreeze proteins in TIP4P/Ice water and their dependence on force fields.
    Lee H
    PLoS One; 2018; 13(6):e0198887. PubMed ID: 29879205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating the Sluggish Water Dynamics at the Ice-Binding Surface of the Hyperactive
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2023 Jan; 127(1):121-132. PubMed ID: 36594578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of hydration shell dynamics around a hyperactive antifreeze protein and around ubiquitin.
    Duboué-Dijon E; Laage D
    J Chem Phys; 2014 Dec; 141(22):22D529. PubMed ID: 25494800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the activity of a beta-helical antifreeze protein by the engineered addition of coils.
    Marshall CB; Daley ME; Sykes BD; Davies PL
    Biochemistry; 2004 Sep; 43(37):11637-46. PubMed ID: 15362848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The basis for hyperactivity of antifreeze proteins.
    Scotter AJ; Marshall CB; Graham LA; Gilbert JA; Garnham CP; Davies PL
    Cryobiology; 2006 Oct; 53(2):229-39. PubMed ID: 16887111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site.
    Middleton AJ; Marshall CB; Faucher F; Bar-Dolev M; Braslavsky I; Campbell RL; Walker VK; Davies PL
    J Mol Biol; 2012 Mar; 416(5):713-24. PubMed ID: 22306740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.