These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 20668909)

  • 21. Structural and Mechanical Roles for the C-Terminal Nonrepetitive Domain Become Apparent in Recombinant Spider Aciniform Silk.
    Xu L; Lefèvre T; Orrell KE; Meng Q; Auger M; Liu XQ; Rainey JK
    Biomacromolecules; 2017 Nov; 18(11):3678-3686. PubMed ID: 28934550
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spidroins from the Brazilian spider Nephilengys cruentata (Araneae: Nephilidae).
    Bittencourt D; Souto BM; Verza NC; Vinecky F; Dittmar K; Silva PI; Andrade AC; da Silva FR; Lewis RV; Rech EL
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Aug; 147(4):597-606. PubMed ID: 17490908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Review the role of terminal domains during storage and assembly of spider silk proteins.
    Eisoldt L; Thamm C; Scheibel T
    Biopolymers; 2012 Jun; 97(6):355-61. PubMed ID: 22057429
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Macroscopic fibers self-assembled from recombinant miniature spider silk proteins.
    Stark M; Grip S; Rising A; Hedhammar M; Engström W; Hjälm G; Johansson J
    Biomacromolecules; 2007 May; 8(5):1695-701. PubMed ID: 17402782
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-assembly of spider silk proteins is controlled by a pH-sensitive relay.
    Askarieh G; Hedhammar M; Nordling K; Saenz A; Casals C; Rising A; Johansson J; Knight SD
    Nature; 2010 May; 465(7295):236-8. PubMed ID: 20463740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression and characterization of chimeric spidroins from flagelliform-aciniform repetitive modules.
    Tian LY; Meng Q; Lin Y
    Biopolymers; 2020 Dec; 111(12):e23404. PubMed ID: 33075850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of terminal globular domains on the response of recombinant mini-spidroins to fiber spinning triggers.
    Finnigan W; Roberts AD; Ligorio C; Scrutton NS; Breitling R; Blaker JJ; Takano E
    Sci Rep; 2020 Jun; 10(1):10671. PubMed ID: 32606438
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-read transcriptomic analysis of orb-weaving spider Araneus ventricosus indicates transcriptional diversity of spidroins.
    Zhou SY; Dong QL; Zhu KS; Gao L; Chen X; Xiang H
    Int J Biol Macromol; 2021 Jan; 168():395-402. PubMed ID: 33275979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the second type of aciniform spidroin (AcSp2) provides new insight into design for spidroin-based biomaterials.
    Wen R; Wang K; Meng Q
    Acta Biomater; 2020 Oct; 115():210-219. PubMed ID: 32798722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intragenic homogenization and multiple copies of prey-wrapping silk genes in Argiope garden spiders.
    Chaw RC; Zhao Y; Wei J; Ayoub NA; Allen R; Atrushi K; Hayashi CY
    BMC Evol Biol; 2014 Feb; 14():31. PubMed ID: 24552485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphology and composition of the spider major ampullate gland and dragline silk.
    Andersson M; Holm L; Ridderstråle Y; Johansson J; Rising A
    Biomacromolecules; 2013 Aug; 14(8):2945-52. PubMed ID: 23837699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk.
    Heidebrecht A; Eisoldt L; Diehl J; Schmidt A; Geffers M; Lang G; Scheibel T
    Adv Mater; 2015 Apr; 27(13):2189-94. PubMed ID: 25689835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein composition correlates with the mechanical properties of spider ( Argiope trifasciata ) dragline silk.
    Marhabaie M; Leeper TC; Blackledge TA
    Biomacromolecules; 2014 Jan; 15(1):20-9. PubMed ID: 24313814
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From EST to novel spider silk gene identification for production of spidroin-based biomaterials.
    Huang W; Zhang Y; Chen Y; Wang Y; Yuan W; Zhang N; Lam TJ; Gong Z; Yang D; Lin Z
    Sci Rep; 2017 Oct; 7(1):13354. PubMed ID: 29042670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production and Properties of Triple Chimeric Spidroins.
    Zhou Y; Rising A; Johansson J; Meng Q
    Biomacromolecules; 2018 Jul; 19(7):2825-2833. PubMed ID: 29669211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanostructured, Self-Assembled Spider Silk Materials for Biomedical Applications.
    Humenik M; Pawar K; Scheibel T
    Adv Exp Med Biol; 2019; 1174():187-221. PubMed ID: 31713200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NMR assignments of the N-terminal domain of Nephila clavipes spidroin 1.
    Parnham S; Gaines WA; Duggan BM; Marcotte WR; Hennig M
    Biomol NMR Assign; 2011 Oct; 5(2):131-3. PubMed ID: 21152998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design, expression and solid-state NMR characterization of silk-like materials constructed from sequences of spider silk, Samia cynthia ricini and Bombyx mori silk fibroins.
    Yang M; Asakura T
    J Biochem; 2005 Jun; 137(6):721-9. PubMed ID: 16002994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spider wrapping silk fibre architecture arising from its modular soluble protein precursor.
    Tremblay ML; Xu L; Lefèvre T; Sarker M; Orrell KE; Leclerc J; Meng Q; Pézolet M; Auger M; Liu XQ; Rainey JK
    Sci Rep; 2015 Jun; 5():11502. PubMed ID: 26112753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Major ampullate spidroins from Euprosthenops australis: multiplicity at protein, mRNA and gene levels.
    Rising A; Johansson J; Larson G; Bongcam-Rudloff E; Engström W; Hjälm G
    Insect Mol Biol; 2007 Oct; 16(5):551-61. PubMed ID: 17680798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.