BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20670051)

  • 1. Structured tree impedance outflow boundary conditions for 3D lung simulations.
    Comerford A; Förster C; Wall WA
    J Biomech Eng; 2010 Aug; 132(8):081002. PubMed ID: 20670051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1D network simulations for evaluating regional flow and pressure distributions in healthy and asthmatic human lungs.
    Choi S; Yoon S; Jeon J; Zou C; Choi J; Tawhai MH; Hoffman EA; Delvadia R; Babiskin A; Walenga R; Lin CL
    J Appl Physiol (1985); 2019 Jul; 127(1):122-133. PubMed ID: 31095459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of airflow in a CT-based ovine lung: a numerical study.
    Kabilan S; Lin CL; Hoffman EA
    J Appl Physiol (1985); 2007 Apr; 102(4):1469-82. PubMed ID: 17110504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multiscale bidirectional coupling framework.
    Kabilan S; Kuprat AP; Hlastala MP; Corley RA; Einstein DR
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2414-7. PubMed ID: 22254828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational model of the topographic distribution of ventilation in healthy human lungs.
    Swan AJ; Clark AR; Tawhai MH
    J Theor Biol; 2012 May; 300():222-31. PubMed ID: 22326472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling stochastic and spatial heterogeneity in a human airway tree to determine variation in respiratory system resistance.
    Leary D; Bhatawadekar SA; Parraga G; Maksym GN
    J Appl Physiol (1985); 2012 Jan; 112(1):167-75. PubMed ID: 21998266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of coupled resistance-compliance in upper tracheobronchial airways under high frequency oscillatory ventilation.
    Alzahrany M; Banerjee A; Salzman G
    Med Eng Phys; 2014 Dec; 36(12):1593-604. PubMed ID: 25248986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling flow in a compromised pediatric airway breathing air and heliox.
    Mihaescu M; Gutmark E; Murugappan S; Elluru R; Cohen A; Willging JP
    Laryngoscope; 2008 Dec; 118(12):2205-11. PubMed ID: 19029854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling flow in a compromised pediatric airway breathing air and heliox.
    Mihaescu M; Gutmark E; Murugappan S; Elluru R; Cohen A; Willging JP
    Laryngoscope; 2009 Jan; 119(1):145-51. PubMed ID: 19117302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dynamic morphometric model of the normal lung for studying expiratory flow limitation in mechanical ventilation.
    Barbini P; Brighenti C; Cevenini G; Gnudi G
    Ann Biomed Eng; 2005 Apr; 33(4):518-30. PubMed ID: 15909658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of ventilation distribution in the human lung.
    Chang YH; Yu CP
    Aerosol Sci Technol; 1999 Mar; 30(3):309-19. PubMed ID: 11676446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The origin of frequency dependence of respiratory resistance: airflow simulation study by the use of a 4D pulmonary lobule model].
    Kitaoka H
    Nihon Kokyuki Gakkai Zasshi; 2011 Sep; 49(9):629-35. PubMed ID: 22073606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential errors in measuring the phase difference between chest flow and mouth flow.
    Mishima M; Kawakami K; Sugiura N; Fukunaga T; Sakai N; Hirai T; Kuno K
    Front Med Biol Eng; 1993; 5(3):185-99. PubMed ID: 8280667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of bronchial diameter change on the airflow dynamics based on a pressure-controlled ventilation system.
    Ren S; Cai M; Shi Y; Xu W; Zhang XD
    Int J Numer Method Biomed Eng; 2018 Mar; 34(3):. PubMed ID: 28906592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of pulmonary air flow with a subject-specific boundary condition.
    Yin Y; Choi J; Hoffman EA; Tawhai MH; Lin CL
    J Biomech; 2010 Aug; 43(11):2159-63. PubMed ID: 20483412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patient-ventilator interaction: a general model for nonpassive mechanical ventilation.
    Crooke PS; Head JD; Marini JJ; Hotchkiss JR
    IMA J Math Appl Med Biol; 1998 Dec; 15(4):321-37. PubMed ID: 9951713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of mechanical load on flow, volume and pressure delivered by high-frequency percussive ventilation.
    Lucangelo U; Antonaglia V; Zin WA; Fontanesi L; Peratoner A; Bird FM; Gullo A
    Respir Physiol Neurobiol; 2004 Aug; 142(1):81-91. PubMed ID: 15351306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling of peak-flow wall shear stress in major airways of the lung.
    Green AS
    J Biomech; 2004 May; 37(5):661-7. PubMed ID: 15046995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulation of respiratory impedance and flow transfer functions during high frequency oscillations.
    Peslin R
    Br J Anaesth; 1989; 63(7 Suppl 1):91S-94S. PubMed ID: 2611083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled and reduced dimensional modeling of respiratory mechanics during spontaneous breathing.
    Ismail M; Comerford A; Wall WA
    Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1285-305. PubMed ID: 23904272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.