These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20670058)

  • 1. Wedge indentation fracture of cortical bone: experimental data and predictions.
    Kasiri S; Reilly G; Taylor D
    J Biomech Eng; 2010 Aug; 132(8):081009. PubMed ID: 20670058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can the theory of critical distances predict the failure of shape memory alloys?
    Kasiri S; Kelly DJ; Taylor D
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):491-6. PubMed ID: 21331959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The true toughness of human cortical bone measured with realistically short cracks.
    Koester KJ; Ager JW; Ritchie RO
    Nat Mater; 2008 Aug; 7(8):672-7. PubMed ID: 18587403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A critical distance study of stress concentrations in bone.
    Kasiri S; Taylor D
    J Biomech; 2008; 41(3):603-9. PubMed ID: 18023446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue.
    Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P
    J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Biomaterials; 2005 May; 26(14):2183-95. PubMed ID: 15576194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response.
    Carnelli D; Lucchini R; Ponzoni M; Contro R; Vena P
    J Biomech; 2011 Jul; 44(10):1852-8. PubMed ID: 21570077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fracture in human cortical bone: local fracture criteria and toughening mechanisms.
    Nalla RK; Stölken JS; Kinney JH; Ritchie RO
    J Biomech; 2005 Jul; 38(7):1517-25. PubMed ID: 15922763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valid micro finite element models of vertebral trabecular bone can be obtained using tissue properties measured with nanoindentation under wet conditions.
    Wolfram U; Wilke HJ; Zysset PK
    J Biomech; 2010 Jun; 43(9):1731-7. PubMed ID: 20206932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element modeling for strain rate dependency of fracture resistance in compact bone.
    Charoenphan S; Polchai A
    J Biomech Eng; 2007 Feb; 129(1):20-5. PubMed ID: 17227094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indentation techniques for evaluating the fracture toughness of biomaterials and hard tissues.
    Kruzic JJ; Kim DK; Koester KJ; Ritchie RO
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):384-95. PubMed ID: 19627845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the microstructural fracture toughness of cortical bone using indentation fracture.
    Mullins LP; Bruzzi MS; McHugh PE
    J Biomech; 2007; 40(14):3285-8. PubMed ID: 17583715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in the crack resistance of interstitial, osteonal and trabecular bone tissue.
    Mullins LP; Sassi V; McHugh PE; Bruzzi MS
    Ann Biomed Eng; 2009 Dec; 37(12):2574-82. PubMed ID: 19763827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High strain rate response of rabbit femur bones.
    Shunmugasamy VC; Gupta N; Coelho PG
    J Biomech; 2010 Nov; 43(15):3044-50. PubMed ID: 20673668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
    Schileo E; Taddei F; Cristofolini L; Viceconti M
    J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fracture toughness of cancellous bone.
    Cook RB; Zioupos P
    J Biomech; 2009 Sep; 42(13):2054-60. PubMed ID: 19643417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimentally determined microcracking around a circular hole in a flat plate of bone: comparison with predicted stresses.
    Zioupos P; Currey JD; Mirza MS; Barton DC
    Philos Trans R Soc Lond B Biol Sci; 1995 Mar; 347(1322):383-96. PubMed ID: 7597104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residual stress around the cortical surface in bovine femoral diaphysis.
    Yamada S; Tadano S
    J Biomech Eng; 2010 Apr; 132(4):044503. PubMed ID: 20387976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy.
    Costa KD; Sim AJ; Yin FC
    J Biomech Eng; 2006 Apr; 128(2):176-84. PubMed ID: 16524328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.