These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Wall shear stress gradient analysis within an idealized stenosis using non-Newtonian flow. Schirmer CM; Malek AM Neurosurgery; 2007 Oct; 61(4):853-63; discussion 863-4. PubMed ID: 17986948 [TBL] [Abstract][Full Text] [Related]
5. Developing pulsatile flow in a deployed coronary stent. Rajamohan D; Banerjee RK; Back LH; Ibrahim AA; Jog MA J Biomech Eng; 2006 Jun; 128(3):347-59. PubMed ID: 16706584 [TBL] [Abstract][Full Text] [Related]
6. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Glagov S; Zarins C; Giddens DP; Ku DN Arch Pathol Lab Med; 1988 Oct; 112(10):1018-31. PubMed ID: 3052352 [TBL] [Abstract][Full Text] [Related]
7. Endothelial nitric oxide synthase and calcium production in arterial geometries: an integrated fluid mechanics/cell model. Comerford A; Plank MJ; David T J Biomech Eng; 2008 Feb; 130(1):011010. PubMed ID: 18298186 [TBL] [Abstract][Full Text] [Related]
8. A new multiphysics model for the physiological responses of vascular endothelial cells to fluid shear stress. Kang HG; Shim EB; Chang KS J Physiol Sci; 2007 Oct; 57(5):299-309. PubMed ID: 17963593 [TBL] [Abstract][Full Text] [Related]
9. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Galbraith CG; Skalak R; Chien S Cell Motil Cytoskeleton; 1998; 40(4):317-30. PubMed ID: 9712262 [TBL] [Abstract][Full Text] [Related]
11. Physiological flow analysis in significant human coronary artery stenoses. Banerjee RK; Back LH; Back MR; Cho YI Biorheology; 2003; 40(4):451-76. PubMed ID: 12775911 [TBL] [Abstract][Full Text] [Related]
12. Changes in organization and composition of the extracellular matrix underlying cultured endothelial cells exposed to laminar steady shear stress. Thoumine O; Nerem RM; Girard PR Lab Invest; 1995 Oct; 73(4):565-76. PubMed ID: 7474929 [TBL] [Abstract][Full Text] [Related]
13. [Influences of graft diameter on the blood flow in 2-way bypassing surgery]. Qiao A; Liu Y; Zhang S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):346-50, 377. PubMed ID: 18610620 [TBL] [Abstract][Full Text] [Related]
16. Wall shear stresses in small and large two-way bypass grafts. Qiao A; Liu Y; Guo Z Med Eng Phys; 2006 Apr; 28(3):251-8. PubMed ID: 16029954 [TBL] [Abstract][Full Text] [Related]
17. Effect of geometrical assumptions on numerical modeling of coronary blood flow under normal and disease conditions. Shanmugavelayudam SK; Rubenstein DA; Yin W J Biomech Eng; 2010 Jun; 132(6):061004. PubMed ID: 20887029 [TBL] [Abstract][Full Text] [Related]
18. Statistical hemodynamics: a tool for evaluating the effect of fluid dynamic forces on vascular biology in vivo. Friedman MH; Himburg HA; LaMack JA J Biomech Eng; 2006 Dec; 128(6):965-8. PubMed ID: 17154699 [TBL] [Abstract][Full Text] [Related]
19. [Effects of wall shear stress on the morphology and permeability of endothelial cells in stenotic rabbit abdominal aorta]. Wu Y; Deng X; Zhen X; Wang K Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):225-9. PubMed ID: 15884523 [TBL] [Abstract][Full Text] [Related]
20. Effect of spatial gradient in fluid shear stress on morphological changes in endothelial cells in response to flow. Sakamoto N; Saito N; Han X; Ohashi T; Sato M Biochem Biophys Res Commun; 2010 Apr; 395(2):264-9. PubMed ID: 20371223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]