BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 20670108)

  • 1. Bioconversion of silver salt into silver nanoparticles using different microorganisms.
    Karmakar S; Kundu S; Kundu K
    Artif Cells Blood Substit Immobil Biotechnol; 2010 Oct; 38(5):259-66. PubMed ID: 20670108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective.
    Jain N; Bhargava A; Majumdar S; Tarafdar JC; Panwar J
    Nanoscale; 2011 Feb; 3(2):635-41. PubMed ID: 21088776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium.
    Vigneshwaran N; Kathe AA; Varadarajan PV; Nachane RP; Balasubramanya RH
    Colloids Surf B Biointerfaces; 2006 Nov; 53(1):55-9. PubMed ID: 16962745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of silver nanocrystals by Bacillus licheniformis.
    Kalimuthu K; Suresh Babu R; Venkataraman D; Bilal M; Gurunathan S
    Colloids Surf B Biointerfaces; 2008 Aug; 65(1):150-3. PubMed ID: 18406112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver-protein (core-shell) nanoparticle production using spent mushroom substrate.
    Vigneshwaran N; Kathe AA; Varadarajan PV; Nachane RP; Balasubramanya RH
    Langmuir; 2007 Jun; 23(13):7113-7. PubMed ID: 17518485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmentally sensitive silver nanoparticles of controlled size synthesized with PNIPAM as a nucleating and capping agent.
    Morones JR; Frey W
    Langmuir; 2007 Jul; 23(15):8180-6. PubMed ID: 17590029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosensitized synthesis of silver nanoparticles using Withania somnifera leaf powder and silver nitrate.
    Raut RW; Mendhulkar VD; Kashid SB
    J Photochem Photobiol B; 2014 Mar; 132():45-55. PubMed ID: 24602813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous catalytic reduction of anthropogenic pollutant, 4-nitrophenol by silver-bionanocomposite using Cylindrocladium floridanum.
    Narayanan KB; Sakthivel N
    Bioresour Technol; 2011 Nov; 102(22):10737-40. PubMed ID: 21940161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens.
    Saravanan M; Vemu AK; Barik SK
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):325-31. PubMed ID: 21798729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of silver and gold nanoparticles using Bacillus licheniformis.
    Sriram MI; Kalishwaralal K; Gurunathan S
    Methods Mol Biol; 2012; 906():33-43. PubMed ID: 22791422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon resonances, optical properties, and electrical conductivity thermal hystersis of silver nanofibers produced by the electrospinning technique.
    Barakat NA; Woo KD; Kanjwal MA; Choi KE; Khil MS; Kim HY
    Langmuir; 2008 Oct; 24(20):11982-7. PubMed ID: 18811221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate.
    Ganesh Babu MM; Gunasekaran P
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):191-5. PubMed ID: 19660920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex.
    Lengke MF; Fleet ME; Southam G
    Langmuir; 2007 Feb; 23(5):2694-9. PubMed ID: 17309217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Controllable synthesis and UV-Vis spectral analysis of silver nanoparticles in AOT microemulsion].
    Zhang WZ; Qiao XL; Luo LL; Chen JG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):789-92. PubMed ID: 19455825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE.
    Saravanan M; Nanda A
    Colloids Surf B Biointerfaces; 2010 Jun; 77(2):214-8. PubMed ID: 20189360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity.
    Thomas V; Yallapu MM; Sreedhar B; Bajpai SK
    J Colloid Interface Sci; 2007 Nov; 315(1):389-95. PubMed ID: 17707388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.
    Birla SS; Tiwari VV; Gade AK; Ingle AP; Yadav AP; Rai MK
    Lett Appl Microbiol; 2009 Feb; 48(2):173-9. PubMed ID: 19141039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the kinetics of growth of silver nanoparticles in different surfactant solutions.
    Khan Z; Al-Thabaiti SA; El-Mossalamy EH; Obaid AY
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):284-8. PubMed ID: 19559581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles.
    Jung R; Kim Y; Kim HS; Jin HJ
    J Biomater Sci Polym Ed; 2009; 20(3):311-24. PubMed ID: 19192358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions.
    Tan S; Erol M; Attygalle A; Du H; Sukhishvili S
    Langmuir; 2007 Sep; 23(19):9836-43. PubMed ID: 17705409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.