BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 20670108)

  • 21. RNA-poly(o-methoxyaniline) hybrid templated growth of silver nanoparticles and nanojacketing: physical and electronic properties.
    Routh P; Mukherjee P; Nandi AK
    Langmuir; 2010 Apr; 26(7):5093-100. PubMed ID: 20020756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid biological synthesis of silver nanoparticles using plant leaf extracts.
    Song JY; Kim BS
    Bioprocess Biosyst Eng; 2009 Jan; 32(1):79-84. PubMed ID: 18438688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown Klebsiella pneumoniae.
    Kalpana D; Lee YS
    Enzyme Microb Technol; 2013 Mar; 52(3):151-6. PubMed ID: 23410925
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate.
    Chen JC; Lin ZH; Ma XX
    Lett Appl Microbiol; 2003; 37(2):105-8. PubMed ID: 12859650
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli.
    Gurunathan S; Kalishwaralal K; Vaidyanathan R; Venkataraman D; Pandian SR; Muniyandi J; Hariharan N; Eom SH
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):328-35. PubMed ID: 19716685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3.
    Anil Kumar S; Abyaneh MK; Gosavi SW; Kulkarni SK; Pasricha R; Ahmad A; Khan MI
    Biotechnol Lett; 2007 Mar; 29(3):439-45. PubMed ID: 17237973
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties.
    Kemp MM; Kumar A; Mousa S; Dyskin E; Yalcin M; Ajayan P; Linhardt RJ; Mousa SA
    Nanotechnology; 2009 Nov; 20(45):455104. PubMed ID: 19822927
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L.
    Nabikhan A; Kandasamy K; Raj A; Alikunhi NM
    Colloids Surf B Biointerfaces; 2010 Sep; 79(2):488-93. PubMed ID: 20627485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts.
    Njagi EC; Huang H; Stafford L; Genuino H; Galindo HM; Collins JB; Hoag GE; Suib SL
    Langmuir; 2011 Jan; 27(1):264-71. PubMed ID: 21133391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosynthesis and Characterization of Silver Nanoparticles by Aspergillus Species.
    Zomorodian K; Pourshahid S; Sadatsharifi A; Mehryar P; Pakshir K; Rahimi MJ; Arabi Monfared A
    Biomed Res Int; 2016; 2016():5435397. PubMed ID: 27652264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity.
    Jaidev LR; Narasimha G
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):430-3. PubMed ID: 20708910
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fungal based synthesis of silver nanoparticles--an effect of temperature on the size of particles.
    Mohammed Fayaz A; Balaji K; Kalaichelvan PT; Venkatesan R
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):123-6. PubMed ID: 19674875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AuAg bimetallic nanoparticles film fabricated based on H2O2-mediated silver reduction and its application.
    Wang L; Wang F; Shang L; Zhu C; Ren W; Dong S
    Talanta; 2010 Jun; 82(1):113-7. PubMed ID: 20685444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of colloidal silver nanoparticles stabilized by Na+-poly(gamma-glutamic acid)-silver nitrate complex via chemical reduction process.
    Yu DG
    Colloids Surf B Biointerfaces; 2007 Oct; 59(2):171-8. PubMed ID: 17583483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biocontrol of Aspergillus flavus on peanut kernels by use of a strain of marine Bacillus megaterium.
    Kong Q; Shan S; Liu Q; Wang X; Yu F
    Int J Food Microbiol; 2010 Apr; 139(1-2):31-5. PubMed ID: 20156660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ synthesis of Ag nanoparticles in aminocalix[4]arene multilayers.
    Gao S; Yuan D; Lü J; Cao R
    J Colloid Interface Sci; 2010 Jan; 341(2):320-5. PubMed ID: 19854446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Laser-ablation-induced synthesis of SiO2-capped noble metal nanoparticles in a single step.
    Jiménez E; Abderrafi K; Abargues R; Valdés JL; Martínez-Pastor JP
    Langmuir; 2010 May; 26(10):7458-63. PubMed ID: 20187628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp.
    Kim SW; Kim KS; Lamsal K; Kim YJ; Kim SB; Jung M; Sim SJ; Kim HS; Chang SJ; Kim JK; Lee YS
    J Microbiol Biotechnol; 2009 Aug; 19(8):760-4. PubMed ID: 19734712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles.
    Kong H; Jang J
    Langmuir; 2008 Mar; 24(5):2051-6. PubMed ID: 18225933
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment.
    Kathiresan K; Manivannan S; Nabeel MA; Dhivya B
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):133-7. PubMed ID: 19269142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.