These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 20670653)

  • 41. Callosal contributions to simultaneous bimanual finger movements.
    Bonzano L; Tacchino A; Roccatagliata L; Abbruzzese G; Mancardi GL; Bove M
    J Neurosci; 2008 Mar; 28(12):3227-33. PubMed ID: 18354026
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional magnetic resonance imaging sequential-finger movement activation differentiating good and poor writers.
    Richards TL; Berninger VW; Stock P; Altemeier L; Trivedi P; Maravilla K
    J Clin Exp Neuropsychol; 2009 Nov; 31(8):967-83. PubMed ID: 19358006
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Temporal coordination in bimanual actions.
    Wiesendanger M; Kaluzny P; Kazennikov O; Palmeri A; Perrig S
    Can J Physiol Pharmacol; 1994 May; 72(5):591-4. PubMed ID: 7954090
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Solo versus joint bimanual coordination.
    Dixon P; Glover S
    Exp Brain Res; 2019 Jan; 237(1):273-287. PubMed ID: 30390100
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A platform for combining virtual reality experiments with functional magnetic resonance imaging.
    Mraz R; Hong J; Quintin G; Staines WR; McIlroy WE; Zakzanis KK; Graham SJ
    Cyberpsychol Behav; 2003 Aug; 6(4):359-68. PubMed ID: 14511447
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fluctuation amplitude and local synchronization of brain activity in the ultra-low frequency band: An fMRI investigation of continuous feedback of finger force.
    Zhang H; Zhang L; Zang Y
    Brain Res; 2015 Dec; 1629():104-12. PubMed ID: 26499258
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Continuous functional magnetic resonance imaging reveals dynamic nonlinearities of "dose-response" curves for finger opposition.
    Berns GS; Song AW; Mao H
    J Neurosci; 1999 Jul; 19(14):RC17. PubMed ID: 10407059
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Potential pitfalls of functional MRI using conventional gradient-recalled echo techniques.
    Kim SG; Hendrich K; Hu X; Merkle H; Uğurbil K
    NMR Biomed; 1994 Mar; 7(1-2):69-74. PubMed ID: 8068528
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Asynchronous decoding of finger movements from ECoG signals using long-range dependencies conditional random fields.
    Delgado Saa JF; Pesters Ad; Cetin M
    J Neural Eng; 2016 Jun; 13(3):036017. PubMed ID: 27138273
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simultaneous measurement of human joint force, surface electromyograms, and functional MRI-measured brain activation.
    Liu JZ; Dai TH; Elster TH; Sahgal V; Brown RW; Yue GH
    J Neurosci Methods; 2000 Aug; 101(1):49-57. PubMed ID: 10967361
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Delineating the whole brain BOLD response to passive movement kinematics.
    Sulzer J; Dueñas J; Stämpili P; Hepp-Reymond MC; Kollias S; Seifritz E; Gassert R
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650474. PubMed ID: 24187291
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Coordination dynamics: (in)stability and metastability in the behavioural and neural systems].
    Oullier O; Lagarde J; Jantzen KJ; Kelso JA
    J Soc Biol; 2006; 200(2):145-67. PubMed ID: 17151551
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A magnetic compatible supernumerary robotic finger for functional magnetic resonance imaging (fMRI) acquisitions: Device description and preliminary results.
    Hussain I; Santarnecchi E; Leo A; Ricciardi E; Rossi S; Prattichizzo D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1177-1182. PubMed ID: 28813981
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Origins of timing errors in human sensorimotor coordination.
    Chen Y; Ding M; Kelso JA
    J Mot Behav; 2001 Mar; 33(1):3-8. PubMed ID: 11265052
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional MRI cerebral activation and deactivation during finger movement.
    Reddy H; Matthews PM; Lassonde M
    Neurology; 2000 Oct; 55(8):1244. PubMed ID: 11071521
    [No Abstract]   [Full Text] [Related]  

  • 56. Interactions between speech and finger movements: an exploration on the dynamic pattern perspective.
    Smith A; McFarland DH; Weber CM
    J Speech Hear Res; 1986 Dec; 29(4):471-80. PubMed ID: 3795889
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Feeling the force: returning haptic signals influence effort inference during motor coordination.
    Ganesh G; Osu R; Naito E
    Sci Rep; 2013; 3():2648. PubMed ID: 24026052
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Distinguishing Patients With a Coordination Disorder From Healthy Controls Using Local Features of Movement Trajectories During the Finger-to-Nose Test.
    Aguilar VS; Martinez Manzanera O; Sival DA; Maurits NM; Roerdink JBTM
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1714-1722. PubMed ID: 30371352
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Non-magnetic equipment for the high-resolution quantification of finger kinematics during functional studies of bimanual coordination.
    De Luca C; Bertollo M; Comani S
    J Neurosci Methods; 2010 Sep; 192(1):173-84. PubMed ID: 20670653
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A-magnetic optic-mechanical device to quantify finger kinematics for fMRI studies of bimanual coordination.
    De Luca C; Comani S; Di Donato L; Caulo M; Bertollo M; Romani GL
    Brain Topogr; 2007; 19(3):155-60. PubMed ID: 17605100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.