BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20671177)

  • 1. Chemistry. Connecting biomass and petroleum processing with a chemical bridge.
    Bozell JJ
    Science; 2010 Jul; 329(5991):522-3. PubMed ID: 20671177
    [No Abstract]   [Full Text] [Related]  

  • 2. Valeric biofuels: a platform of cellulosic transportation fuels.
    Lange JP; Price R; Ayoub PM; Louis J; Petrus L; Clarke L; Gosselink H
    Angew Chem Int Ed Engl; 2010 Jun; 49(26):4479-83. PubMed ID: 20446282
    [No Abstract]   [Full Text] [Related]  

  • 3. Electricity storage in biofuels: selective electrocatalytic reduction of levulinic acid to valeric acid or γ-valerolactone.
    Xin L; Zhang Z; Qi J; Chadderdon DJ; Qiu Y; Warsko KM; Li W
    ChemSusChem; 2013 Apr; 6(4):674-86. PubMed ID: 23457116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pentenoic acid pathways for cellulosic biofuels.
    Palkovits R
    Angew Chem Int Ed Engl; 2010 Jun; 49(26):4336-8. PubMed ID: 20480484
    [No Abstract]   [Full Text] [Related]  

  • 5. Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system.
    Geilen FM; Engendahl B; Harwardt A; Marquardt W; Klankermayer J; Leitner W
    Angew Chem Int Ed Engl; 2010 Jul; 49(32):5510-4. PubMed ID: 20586088
    [No Abstract]   [Full Text] [Related]  

  • 6. Conversion of levulinic acid and formic acid into γ-valerolactone over heterogeneous catalysts.
    Deng L; Zhao Y; Li J; Fu Y; Liao B; Guo QX
    ChemSusChem; 2010 Oct; 3(10):1172-5. PubMed ID: 20872402
    [No Abstract]   [Full Text] [Related]  

  • 7. Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis.
    Metzker G; Burtoloso AC
    Chem Commun (Camb); 2015 Sep; 51(75):14199-202. PubMed ID: 26258183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond.
    Omoruyi U; Page S; Hallett J; Miller PW
    ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic conversion of renewable biomass resources to fuels and chemicals.
    Serrano-Ruiz JC; West RM; Dumesic JA
    Annu Rev Chem Biomol Eng; 2010; 1():79-100. PubMed ID: 22432574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical Coupling of Biomass-Derived Acids: New C
    Wu L; Mascal M; Farmer TJ; Arnaud SP; Wong Chang MA
    ChemSusChem; 2017 Jan; 10(1):166-170. PubMed ID: 27873475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of biomass-derived levulinate and formate esters into γ-valerolactone over supported gold catalysts.
    Du XL; Bi QY; Liu YM; Cao Y; Fan KN
    ChemSusChem; 2011 Dec; 4(12):1838-43. PubMed ID: 22105964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochar and biofuels for a brighter future.
    Hayes MH
    Nature; 2006 Sep; 443(7108):144. PubMed ID: 16971924
    [No Abstract]   [Full Text] [Related]  

  • 13. Efficient, chemical-catalytic approach to the production of 3-hydroxypropanoic acid by oxidation of biomass-derived levulinic acid with hydrogen peroxide.
    Wu L; Dutta S; Mascal M
    ChemSusChem; 2015 Apr; 8(7):1167-9. PubMed ID: 25736835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical-catalytic approaches to the production of furfurals and levulinates from biomass.
    Mascal M; Dutta S
    Top Curr Chem; 2014; 353():41-83. PubMed ID: 24842621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts.
    Chia M; Dumesic JA
    Chem Commun (Camb); 2011 Nov; 47(44):12233-5. PubMed ID: 22005944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recyclable Earth-Abundant Metal Nanoparticle Catalysts for Selective Transfer Hydrogenation of Levulinic Acid to Produce γ-Valerolactone.
    Gowda RR; Chen EY
    ChemSusChem; 2016 Jan; 9(2):181-5. PubMed ID: 26735911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximising opportunities in supercritical chemistry: the continuous conversion of levulinic acid to gamma-valerolactone in CO(2).
    Bourne RA; Stevens JG; Ke J; Poliakoff M
    Chem Commun (Camb); 2007 Nov; (44):4632-4. PubMed ID: 17989815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Catalytic Hydrogenation of Biomass-Derived Methyl Levulinate to γ-Valerolactone in Methanol.
    Tang X; Li Z; Zeng X; Jiang Y; Liu S; Lei T; Sun Y; Lin L
    ChemSusChem; 2015 May; 8(9):1601-7. PubMed ID: 25873556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodeoxygenation of the angelica lactone dimer, a cellulose-based feedstock: simple, high-yield synthesis of branched C7 -C10 gasoline-like hydrocarbons.
    Mascal M; Dutta S; Gandarias I
    Angew Chem Int Ed Engl; 2014 Feb; 53(7):1854-7. PubMed ID: 24474249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of water in metal catalyst performance for ketone hydrogenation: a joint experimental and theoretical study on levulinic acid conversion into gamma-valerolactone.
    Michel C; Zaffran J; Ruppert AM; Matras-Michalska J; Jędrzejczyk M; Grams J; Sautet P
    Chem Commun (Camb); 2014 Oct; 50(83):12450-3. PubMed ID: 24980805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.