These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 20671958)

  • 1. Vaxign: the first web-based vaccine design program for reverse vaccinology and applications for vaccine development.
    He Y; Xiang Z; Mobley HL
    J Biomed Biotechnol; 2010; 2010():297505. PubMed ID: 20671958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vaxign2: the second generation of the first Web-based vaccine design program using reverse vaccinology and machine learning.
    Ong E; Cooke MF; Huffman A; Xiang Z; Wong MU; Wang H; Seetharaman M; Valdez N; He Y
    Nucleic Acids Res; 2021 Jul; 49(W1):W671-W678. PubMed ID: 34009334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide prediction of vaccine targets for human herpes simplex viruses using Vaxign reverse vaccinology.
    Xiang Z; He Y
    BMC Bioinformatics; 2013; 14 Suppl 4(Suppl 4):S2. PubMed ID: 23514126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vaccine Design by Reverse Vaccinology and Machine Learning.
    Ong E; He Y
    Methods Mol Biol; 2022; 2414():1-16. PubMed ID: 34784028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jenner-predict server: prediction of protein vaccine candidates (PVCs) in bacteria based on host-pathogen interactions.
    Jaiswal V; Chanumolu SK; Gupta A; Chauhan RS; Rout C
    BMC Bioinformatics; 2013 Jul; 14():211. PubMed ID: 23815072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibiotic Resistance Determinant-Focused Acinetobacter baumannii Vaccine Designed Using Reverse Vaccinology.
    Ni Z; Chen Y; Ong E; He Y
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28230771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vaxign-ML: supervised machine learning reverse vaccinology model for improved prediction of bacterial protective antigens.
    Ong E; Wang H; Wong MU; Seetharaman M; Valdez N; He Y
    Bioinformatics; 2020 May; 36(10):3185-3191. PubMed ID: 32096826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Vaxign-DL for Vaccine Candidate Prediction with added ESM-Generated Features.
    Chen Y; Zhang Y; He Y
    bioRxiv; 2024 Sep; ():. PubMed ID: 39282385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vaxign-DL: A Deep Learning-based Method for Vaccine Design and its Evaluation.
    Zhang Y; Huffman A; Johnson J; He Y
    bioRxiv; 2023 Dec; ():. PubMed ID: 38076796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse vaccinology and subtractive genomics-based putative vaccine targets identification for Burkholderia pseudomallei Bp1651.
    Hizbullah ; Nazir Z; Afridi SG; Shah M; Shams S; Khan A
    Microb Pathog; 2018 Dec; 125():219-229. PubMed ID: 30243554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-Wide Prediction of Potential Vaccine Candidates for Campylobacter jejuni Using Reverse Vaccinology.
    Jain R; Singh S; Verma SK; Jain A
    Interdiscip Sci; 2019 Sep; 11(3):337-347. PubMed ID: 29128919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mature Epitope Density--a strategy for target selection based on immunoinformatics and exported prokaryotic proteins.
    Santos AR; Pereira VB; Barbosa E; Baumbach J; Pauling J; Röttger R; Turk MZ; Silva A; Miyoshi A; Azevedo V
    BMC Genomics; 2013; 14 Suppl 6(Suppl 6):S4. PubMed ID: 24564223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New putative vaccine candidates against Acinetobacter baumannii using the reverse vaccinology method.
    Fereshteh S; Abdoli S; Shahcheraghi F; Ajdary S; Nazari M; Badmasti F
    Microb Pathog; 2020 Jun; 143():104114. PubMed ID: 32145321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of epitope-based peptide vaccine candidates against enterotoxigenic Escherichia coli: a comparative genomics and immunoinformatics approach.
    Mehla K; Ramana J
    Mol Biosyst; 2016 Mar; 12(3):890-901. PubMed ID: 26766131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Updates on the web-based VIOLIN vaccine database and analysis system.
    He Y; Racz R; Sayers S; Lin Y; Todd T; Hur J; Li X; Patel M; Zhao B; Chung M; Ostrow J; Sylora A; Dungarani P; Ulysse G; Kochhar K; Vidri B; Strait K; Jourdian GW; Xiang Z
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D1124-32. PubMed ID: 24259431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VacSol: a high throughput in silico pipeline to predict potential therapeutic targets in prokaryotic pathogens using subtractive reverse vaccinology.
    Rizwan M; Naz A; Ahmad J; Naz K; Obaid A; Parveen T; Ahsan M; Ali A
    BMC Bioinformatics; 2017 Feb; 18(1):106. PubMed ID: 28193166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunoprotective potential of in silico predicted Acinetobacter baumannii outer membrane nuclease, NucAb.
    Garg N; Singh R; Shukla G; Capalash N; Sharma P
    Int J Med Microbiol; 2016 Jan; 306(1):1-9. PubMed ID: 26614015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential Outer Membrane Protein Candidates for Vaccine Development Against the Pathogen Vibrio anguillarum: A Reverse Vaccinology Based Identification.
    Baliga P; Shekar M; Venugopal MN
    Curr Microbiol; 2018 Mar; 75(3):368-377. PubMed ID: 29119233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing an efficient multi-epitope vaccine against Campylobacter jejuni using immunoinformatics and reverse vaccinology approach.
    Gupta N; Kumar A
    Microb Pathog; 2020 Oct; 147():104398. PubMed ID: 32771659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Web Resource for Designing Subunit Vaccine Against Major Pathogenic Species of Bacteria.
    Nagpal G; Usmani SS; Raghava GPS
    Front Immunol; 2018; 9():2280. PubMed ID: 30356876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.