These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20672028)

  • 1. Snap-Through Instability of Graphene on Substrates.
    Li T; Zhang Z
    Nanoscale Res Lett; 2009 Oct; 5(1):169-173. PubMed ID: 20672028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible wrinkles of monolayer graphene on a polymer substrate: toward stretchable and flexible electronics.
    Li Y
    Soft Matter; 2016 Apr; 12(13):3202-13. PubMed ID: 26924574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of stepped substrates on the interfacial adhesion properties of graphene membranes.
    He Y; Yu W; Ouyang G
    Phys Chem Chem Phys; 2014 Jun; 16(23):11390-7. PubMed ID: 24797681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of a graphene substrate on the structure and properties of atomically thin metal sheets.
    Zhou G
    Phys Chem Chem Phys; 2020 Jan; 22(2):667-673. PubMed ID: 31829359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of surface morphology on friction of graphene on various substrates.
    Cho DH; Wang L; Kim JS; Lee GH; Kim ES; Lee S; Lee SY; Hone J; Lee C
    Nanoscale; 2013 Apr; 5(7):3063-9. PubMed ID: 23462814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AFM and Raman study of graphene deposited on silicon surfaces nanostructured by ion beam irradiation.
    Dell'anna R; Iacob E; Tripathi M; Dalton A; BÖttger R; Pepponi G
    J Microsc; 2020 Dec; 280(3):183-193. PubMed ID: 32424808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial bonding characteristics between graphene and dielectric substrates.
    Das S; Lahiri D; Agarwal A; Choi W
    Nanotechnology; 2014 Jan; 25(4):045707. PubMed ID: 24399030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic Strain Relaxation of Graphene by Corrugation on Copper Crystal Surfaces.
    Deng B; Wu J; Zhang S; Qi Y; Zheng L; Yang H; Tang J; Tong L; Zhang J; Liu Z; Peng H
    Small; 2018 May; 14(22):e1800725. PubMed ID: 29717818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal orientation relation and macroscopic surface roughness in hetero-epitaxial graphene grown on Cu/mica.
    Qi JL; Nagashio K; Nishimura T; Toriumi A
    Nanotechnology; 2014 May; 25(18):185602. PubMed ID: 24739680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rough contact is not always bad for interfacial energy coupling.
    Zhang J; Wang Y; Wang X
    Nanoscale; 2013 Dec; 5(23):11598-603. PubMed ID: 24121980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of Ultraflat Graphene with Greatly Enhanced Mechanical Properties.
    Deng B; Hou Y; Liu Y; Khodkov T; Goossens S; Tang J; Wang Y; Yan R; Du Y; Koppens FHL; Wei X; Zhang Z; Liu Z; Peng H
    Nano Lett; 2020 Sep; 20(9):6798-6806. PubMed ID: 32787178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-driven reversible rippling and bonding of a graphene superlattice.
    Locatelli A; Wang C; Africh C; Stojić N; Menteş TO; Comelli G; Binggeli N
    ACS Nano; 2013 Aug; 7(8):6955-63. PubMed ID: 23869594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong interface-induced spin-orbit interaction in graphene on WS2.
    Wang Z; Ki DK; Chen H; Berger H; MacDonald AH; Morpurgo AF
    Nat Commun; 2015 Sep; 6():8339. PubMed ID: 26391068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomically flat and thermally stable graphene on Si(111) with preserved intrinsic electronic properties.
    Li X; Li B; Fan X; Wei L; Li L; Tao R; Zhang X; Zhang H; Zhang Q; Zhu H; Zhang S; Zhang Z; Zeng C
    Nanoscale; 2018 May; 10(18):8377-8384. PubMed ID: 29701214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wetting Transitions of Liquid Gallium Film on Nanopillar-Decorated Graphene Surfaces.
    Wang J; Li T; Li Y; Duan Y; Jiang Y; Arandiyan H; Li H
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30241288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the nanoscale rippling of graphene with SiO2 nanoparticles.
    Osváth Z; Gergely-Fülöp E; Nagy N; Deák A; Nemes-Incze P; Jin X; Hwang C; Biró LP
    Nanoscale; 2014 Jun; 6(11):6030-6. PubMed ID: 24776641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic THz study of the substrate effect in limiting the mobility of graphene.
    Scarfe S; Cui W; Luican-Mayer A; Ménard JM
    Sci Rep; 2021 Apr; 11(1):8729. PubMed ID: 33888755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of pull-in instability in graphene membranes under interfacial forces.
    Liu X; Boddeti NG; Szpunar MR; Wang L; Rodriguez MA; Long R; Xiao J; Dunn ML; Bunch JS
    Nano Lett; 2013 May; 13(5):2309-13. PubMed ID: 23614533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning probe microscopy investigations of the electrical properties of chemical vapor deposited graphene grown on a 6H-SiC substrate.
    Gajewski K; Kopiec D; Moczała M; Piotrowicz A; Zielony M; Wielgoszewski G; Gotszalk T; Strupiński W
    Micron; 2015 Jan; 68():17-22. PubMed ID: 25203361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening effect of CVD graphene on the surface free energy of substrates.
    Costa MCF; Parra GG; G Larrudé DR; Fechine GJM
    Phys Chem Chem Phys; 2020 Aug; 22(29):16672-16680. PubMed ID: 32658238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.