These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20672041)

  • 1. Optical Properties of GaAs Quantum Dots Fabricated by Filling of Self-Assembled Nanoholes.
    Heyn C; Stemmann A; Köppen T; Strelow C; Kipp T; Grave M; Mendach S; Hansen W
    Nanoscale Res Lett; 2009 Dec; 5(3):576-580. PubMed ID: 20672041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-dot Spectroscopy of GaAs Quantum Dots Fabricated by Filling of Self-assembled Nanoholes.
    Heyn Ch; Klingbeil M; Strelow Ch; Stemmann A; Mendach S; Hansen W
    Nanoscale Res Lett; 2010 Jul; 5(10):1633-6. PubMed ID: 21076707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet etching of deep nanoholes for filling with self-aligned complex quantum structures.
    Küster A; Heyn C; Ungeheuer A; Juska G; Tommaso Moroni S; Pelucchi E; Hansen W
    Nanoscale Res Lett; 2016 Dec; 11(1):282. PubMed ID: 27255902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Luminescence from Droplet-Etched GaAs Quantum Dots at and Close to Room Temperature.
    Ranasinghe L; Heyn C; Deneke K; Zocher M; Korneev R; Hansen W
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33802007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dot-Size Dependent Excitons in Droplet-Etched Cone-Shell GaAs Quantum Dots.
    Heyn C; Gräfenstein A; Pirard G; Ranasinghe L; Deneke K; Alshaikh A; Bester G; Hansen W
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertically stacked quantum dot pairs fabricated by nanohole filling.
    Sonnenberg D; Küster A; Graf A; Heyn Ch; Hansen W
    Nanotechnology; 2014 May; 25(21):215602. PubMed ID: 24784358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-Enhanced Exciton Emission from GaAs Cone-Shell Quantum Dots.
    Heyn C; Ranasinghe L; Deneke K; Alshaikh A; Blick RH
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38133018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and Optical Properties of Strain-free Self-assembled Mesoscopic GaAs Structures.
    da Silva SFC; Mardegan T; de Araújo SR; Ramirez CAO; Kiravittaya S; Couto ODD; Iikawa F; Deneke C
    Nanoscale Res Lett; 2017 Dec; 12(1):61. PubMed ID: 28110446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stacked GaAs quantum dots fabricated by refilling of self-organized nanoholes: optical properties and post-growth annealing.
    Polojärvi V; Schramm A; Guina M; Stemmann A; Heyn C
    Nanotechnology; 2011 Mar; 22(10):105603. PubMed ID: 21289401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Arsenic During Aluminum Droplet Etching of Nanoholes in AlGaAs.
    Heyn C; Zocher M; Schnüll S; Hansen W
    Nanoscale Res Lett; 2016 Dec; 11(1):428. PubMed ID: 27671015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermally controlled widening of droplet etched nanoholes.
    Heyn C; Schnüll S; Jesson DE; Hansen W
    Nanoscale Res Lett; 2014; 9(1):285. PubMed ID: 24948902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly uniform and symmetric epitaxial InAs quantum dots embedded inside Indium droplet etched nanoholes.
    Yu Y; Zhong H; Yang J; Liu L; Liu J; Yu S
    Nanotechnology; 2019 Nov; 30(48):485001. PubMed ID: 31469109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unveiling the 3D Morphology of Epitaxial GaAs/AlGaAs Quantum Dots.
    Zhang Y; Grünewald L; Cao X; Abdelbarey D; Zheng X; Rugeramigabo EP; Verbeeck J; Zopf M; Ding F
    Nano Lett; 2024 Jul; ():. PubMed ID: 39053013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. InAs quantum dots on nanopatterned GaAs (001) surface: the growth, optical properties, and device implementation.
    Wong PS; Liang B; Huffaker DL
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1537-50. PubMed ID: 20355542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alloy Fluctuations Act as Quantum Dot-like Emitters in GaAs-AlGaAs Core-Shell Nanowires.
    Jeon N; Loitsch B; Morkoetter S; Abstreiter G; Finley J; Krenner HJ; Koblmueller G; Lauhon LJ
    ACS Nano; 2015 Aug; 9(8):8335-43. PubMed ID: 26225539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Filling of hole arrays with InAs quantum dots.
    Lee JY; Noordhoek MJ; Smereka P; McKay H; Millunchick JM
    Nanotechnology; 2009 Jul; 20(28):285305. PubMed ID: 19546494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-narrow emission from single GaAs self-assembled quantum dots grown by droplet epitaxy.
    Mano T; Abbarchi M; Kuroda T; Mastrandrea CA; Vinattieri A; Sanguinetti S; Sakoda K; Gurioli M
    Nanotechnology; 2009 Sep; 20(39):395601. PubMed ID: 19724114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong Electric Polarizability of Cone-Shell Quantum Structures for a Large Stark Shift, Tunable Long Exciton Lifetimes, and a Dot-to-Ring Transformation.
    Heyn C; Ranasinghe L; Deneke K; Alshaikh A; Duque CA; Hansen W
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical anisotropy in self-assembled InAs nanostructures grown on GaAs high index substrate.
    Bennour M; Saidi F; Bouzaïene L; Sfaxi L; Maaref H
    J Appl Phys; 2012 Jan; 111(2):24310-243107. PubMed ID: 22396623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-temperature droplet epitaxy of symmetric GaAs/AlGaAs quantum dots.
    Bietti S; Basset FB; Tuktamyshev A; Bonera E; Fedorov A; Sanguinetti S
    Sci Rep; 2020 Apr; 10(1):6532. PubMed ID: 32300114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.