These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. New methods for ligand-based virtual screening: use of data fusion and machine learning to enhance the effectiveness of similarity searching. Hert J; Willett P; Wilton DJ; Acklin P; Azzaoui K; Jacoby E; Schuffenhauer A J Chem Inf Model; 2006; 46(2):462-70. PubMed ID: 16562973 [TBL] [Abstract][Full Text] [Related]
7. A knowledge-based weighting approach to ligand-based virtual screening. Stiefl N; Zaliani A J Chem Inf Model; 2006; 46(2):587-96. PubMed ID: 16562987 [TBL] [Abstract][Full Text] [Related]
8. Introduction of a generally applicable method to estimate retrieval of active molecules for similarity searching using fingerprints. Vogt M; Bajorath J ChemMedChem; 2007 Sep; 2(9):1311-20. PubMed ID: 17562536 [TBL] [Abstract][Full Text] [Related]
9. Analysis and use of fragment-occurrence data in similarity-based virtual screening. Arif SM; Holliday JD; Willett P J Comput Aided Mol Des; 2009 Sep; 23(9):655-68. PubMed ID: 19536456 [TBL] [Abstract][Full Text] [Related]
10. How do 2D fingerprints detect structurally diverse active compounds? Revealing compound subset-specific fingerprint features through systematic selection. Heikamp K; Bajorath J J Chem Inf Model; 2011 Sep; 51(9):2254-65. PubMed ID: 21793563 [TBL] [Abstract][Full Text] [Related]
11. Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments. Sastry M; Lowrie JF; Dixon SL; Sherman W J Chem Inf Model; 2010 May; 50(5):771-84. PubMed ID: 20450209 [TBL] [Abstract][Full Text] [Related]
12. RelACCS-FP: a structural minimalist approach to fingerprint design. Hu Y; Lounkine E; Batista J; Bajorath J Chem Biol Drug Des; 2008 Nov; 72(5):341-9. PubMed ID: 19012570 [TBL] [Abstract][Full Text] [Related]
13. Bayesian screening for active compounds in high-dimensional chemical spaces combining property descriptors and molecular fingerprints. Vogt M; Bajorath J Chem Biol Drug Des; 2008 Jan; 71(1):8-14. PubMed ID: 18069988 [TBL] [Abstract][Full Text] [Related]
14. Random reduction in fingerprint bit density improves compound recall in search calculations using complex reference molecules. Wang Y; Geppert H; Bajorath J Chem Biol Drug Des; 2008 Jun; 71(6):511-7. PubMed ID: 18466274 [TBL] [Abstract][Full Text] [Related]
16. How similar are similarity searching methods? A principal component analysis of molecular descriptor space. Bender A; Jenkins JL; Scheiber J; Sukuru SC; Glick M; Davies JW J Chem Inf Model; 2009 Jan; 49(1):108-19. PubMed ID: 19123924 [TBL] [Abstract][Full Text] [Related]
17. Integrating structure- and ligand-based virtual screening: comparison of individual, parallel, and fused molecular docking and similarity search calculations on multiple targets. Tan L; Geppert H; Sisay MT; Gütschow M; Bajorath J ChemMedChem; 2008 Oct; 3(10):1566-71. PubMed ID: 18651695 [TBL] [Abstract][Full Text] [Related]
18. Use of reduced graphs to encode bioisosterism for similarity-based virtual screening. Birchall K; Gillet VJ; Willett P; Ducrot P; Luttmann C J Chem Inf Model; 2009 Jun; 49(6):1330-46. PubMed ID: 19485397 [TBL] [Abstract][Full Text] [Related]
19. Reduction and recombination of fingerprints of different design increase compound recall and the structural diversity of hits. Nisius B; Bajorath J Chem Biol Drug Des; 2010 Feb; 75(2):152-60. PubMed ID: 20028390 [TBL] [Abstract][Full Text] [Related]