BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 20672938)

  • 1. Alterations of pulsation absorber characteristics in experimental hydrocephalus.
    Park EH; Dombrowski S; Luciano M; Zurakowski D; Madsen JR
    J Neurosurg Pediatr; 2010 Aug; 6(2):159-70. PubMed ID: 20672938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired pulsation absorber mechanism in idiopathic normal pressure hydrocephalus: laboratory investigation.
    Park EH; Eide PK; Zurakowski D; Madsen JR
    J Neurosurg; 2012 Dec; 117(6):1189-96. PubMed ID: 23061391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracranial pressure waves: characterization of a pulsation absorber with notch filter properties using systems analysis: laboratory investigation.
    Zou R; Park EH; Kelly EM; Egnor M; Wagshul ME; Madsen JR
    J Neurosurg Pediatr; 2008 Jul; 2(1):83-94. PubMed ID: 18590402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonant and notch behavior in intracranial pressure dynamics.
    Wagshul ME; Kelly EJ; Yu HJ; Garlick B; Zimmerman T; Egnor MR
    J Neurosurg Pediatr; 2009 May; 3(5):354-64. PubMed ID: 19409013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Analysis of intracranial pressure pulse wave in experimental hydrocephalus].
    Matsumoto T; Fukushima T; Mase M; Nagai H
    No To Shinkei; 1992 Sep; 44(9):833-40. PubMed ID: 1476813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypothesis for lateral ventricular dilatation in communicating hydrocephalus: new understanding of the Monro-Kellie hypothesis in the aspect of cardiac energy transfer through arterial blood flow.
    Lee HS; Yoon SH
    Med Hypotheses; 2009 Feb; 72(2):174-7. PubMed ID: 18976868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is ventriculomegaly in idiopathic normal pressure hydrocephalus associated with a transmantle gradient in pulsatile intracranial pressure?
    Eide PK; Saehle T
    Acta Neurochir (Wien); 2010 Jun; 152(6):989-95. PubMed ID: 20130957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ventricular dilation and elevated aqueductal pulsations in a new experimental model of communicating hydrocephalus.
    Wagshul ME; McAllister JP; Rashid S; Li J; Egnor MR; Walker ML; Yu M; Smith SD; Zhang G; Chen JJ; Benveniste H
    Exp Neurol; 2009 Jul; 218(1):33-40. PubMed ID: 19348801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic hydrocephalus-induced changes in cerebral blood flow: mediation through cardiac effects.
    Dombrowski SM; Schenk S; Leichliter A; Leibson Z; Fukamachi K; Luciano MG
    J Cereb Blood Flow Metab; 2006 Oct; 26(10):1298-310. PubMed ID: 16495938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New understanding of the role of cerebrospinal fluid: offsetting of arterial and brain pulsation and self-dissipation of cerebrospinal fluid pulsatile flow energy.
    Min KJ; Yoon SH; Kang JK
    Med Hypotheses; 2011 Jun; 76(6):884-6. PubMed ID: 21458167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Waveform caused by raised intracranial pressure--application of spectral analysis in the study of waveform].
    Takizawa H
    No To Shinkei; 1987 Feb; 39(2):135-42. PubMed ID: 3828148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiological assessment of hydrocephalus: new theories and implications for therapy.
    Greitz D
    Neurosurg Rev; 2004 Jul; 27(3):145-65; discussion 166-7. PubMed ID: 15164255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Cerebrospinal fluid dynamics in chronic obstructive hydrocephalus before and after successful endoscopic third ventriculostomy].
    Korshunov AE; Shakhnovich AR; Melikian AG; Arutiunov NV; Kudriavtsev IIu
    Zh Vopr Neirokhir Im N N Burdenko; 2008; (4):17-23; discussion 24. PubMed ID: 19230478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance imaging for quantitative flow measurement in infants with hydrocephalus: a prospective study.
    Leliefeld PH; Gooskens RH; Vincken KL; Ramos LM; van der Grond J; Tulleken CA; Kappelle LJ; Hanlo PW
    J Neurosurg Pediatr; 2008 Sep; 2(3):163-70. PubMed ID: 18759596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The critical threshold of cerebral perfusion pressure in intracranial pressure circumstance of hydrocephalus during infancy].
    Sato H; Sato N; Tamaki N; Matsumoto S
    No Shinkei Geka; 1988 Apr; 16(4):385-92. PubMed ID: 3386780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demonstration of uneven distribution of intracranial pulsatility in hydrocephalus patients.
    Eide PK
    J Neurosurg; 2008 Nov; 109(5):912-7. PubMed ID: 18976084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative model of the cerebral windkessel and its relevance to disorders of intracranial dynamics.
    Egnor M; Yang L; Mani RM; Fiore SM; Djurić PM
    J Neurosurg Pediatr; 2023 Sep; 32(3):302-311. PubMed ID: 37382303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ventriculoperitoneal shunt removal on cerebral oxygenation and brain compliance in chronic obstructive hydrocephalus.
    Fukuhara T; Luciano MG; Brant CL; Klauscie J
    J Neurosurg; 2001 Apr; 94(4):573-81. PubMed ID: 11302655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Special artificial respiration procedures and intracranial pressure. Animal experiment studies, development and use of a new pressure measuring technic, clinical aspects].
    Schedl R
    Wien Klin Wochenschr Suppl; 1985; 157():1-22. PubMed ID: 3922125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of the intracranial pressure waveform during infusion studies by means of central tendency measure.
    Santamarta D; Abásolo D; Martínez-Madrigal M; Hornero R
    Acta Neurochir (Wien); 2012 Sep; 154(9):1595-602. PubMed ID: 22805895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.