These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 20672938)
1. Alterations of pulsation absorber characteristics in experimental hydrocephalus. Park EH; Dombrowski S; Luciano M; Zurakowski D; Madsen JR J Neurosurg Pediatr; 2010 Aug; 6(2):159-70. PubMed ID: 20672938 [TBL] [Abstract][Full Text] [Related]
2. Impaired pulsation absorber mechanism in idiopathic normal pressure hydrocephalus: laboratory investigation. Park EH; Eide PK; Zurakowski D; Madsen JR J Neurosurg; 2012 Dec; 117(6):1189-96. PubMed ID: 23061391 [TBL] [Abstract][Full Text] [Related]
3. Intracranial pressure waves: characterization of a pulsation absorber with notch filter properties using systems analysis: laboratory investigation. Zou R; Park EH; Kelly EM; Egnor M; Wagshul ME; Madsen JR J Neurosurg Pediatr; 2008 Jul; 2(1):83-94. PubMed ID: 18590402 [TBL] [Abstract][Full Text] [Related]
5. [Analysis of intracranial pressure pulse wave in experimental hydrocephalus]. Matsumoto T; Fukushima T; Mase M; Nagai H No To Shinkei; 1992 Sep; 44(9):833-40. PubMed ID: 1476813 [TBL] [Abstract][Full Text] [Related]
6. Hypothesis for lateral ventricular dilatation in communicating hydrocephalus: new understanding of the Monro-Kellie hypothesis in the aspect of cardiac energy transfer through arterial blood flow. Lee HS; Yoon SH Med Hypotheses; 2009 Feb; 72(2):174-7. PubMed ID: 18976868 [TBL] [Abstract][Full Text] [Related]
7. Is ventriculomegaly in idiopathic normal pressure hydrocephalus associated with a transmantle gradient in pulsatile intracranial pressure? Eide PK; Saehle T Acta Neurochir (Wien); 2010 Jun; 152(6):989-95. PubMed ID: 20130957 [TBL] [Abstract][Full Text] [Related]
8. Ventricular dilation and elevated aqueductal pulsations in a new experimental model of communicating hydrocephalus. Wagshul ME; McAllister JP; Rashid S; Li J; Egnor MR; Walker ML; Yu M; Smith SD; Zhang G; Chen JJ; Benveniste H Exp Neurol; 2009 Jul; 218(1):33-40. PubMed ID: 19348801 [TBL] [Abstract][Full Text] [Related]
10. New understanding of the role of cerebrospinal fluid: offsetting of arterial and brain pulsation and self-dissipation of cerebrospinal fluid pulsatile flow energy. Min KJ; Yoon SH; Kang JK Med Hypotheses; 2011 Jun; 76(6):884-6. PubMed ID: 21458167 [TBL] [Abstract][Full Text] [Related]
11. [Waveform caused by raised intracranial pressure--application of spectral analysis in the study of waveform]. Takizawa H No To Shinkei; 1987 Feb; 39(2):135-42. PubMed ID: 3828148 [TBL] [Abstract][Full Text] [Related]
12. Radiological assessment of hydrocephalus: new theories and implications for therapy. Greitz D Neurosurg Rev; 2004 Jul; 27(3):145-65; discussion 166-7. PubMed ID: 15164255 [TBL] [Abstract][Full Text] [Related]
13. [Cerebrospinal fluid dynamics in chronic obstructive hydrocephalus before and after successful endoscopic third ventriculostomy]. Korshunov AE; Shakhnovich AR; Melikian AG; Arutiunov NV; Kudriavtsev IIu Zh Vopr Neirokhir Im N N Burdenko; 2008; (4):17-23; discussion 24. PubMed ID: 19230478 [TBL] [Abstract][Full Text] [Related]
14. Magnetic resonance imaging for quantitative flow measurement in infants with hydrocephalus: a prospective study. Leliefeld PH; Gooskens RH; Vincken KL; Ramos LM; van der Grond J; Tulleken CA; Kappelle LJ; Hanlo PW J Neurosurg Pediatr; 2008 Sep; 2(3):163-70. PubMed ID: 18759596 [TBL] [Abstract][Full Text] [Related]
15. [The critical threshold of cerebral perfusion pressure in intracranial pressure circumstance of hydrocephalus during infancy]. Sato H; Sato N; Tamaki N; Matsumoto S No Shinkei Geka; 1988 Apr; 16(4):385-92. PubMed ID: 3386780 [TBL] [Abstract][Full Text] [Related]
16. Demonstration of uneven distribution of intracranial pulsatility in hydrocephalus patients. Eide PK J Neurosurg; 2008 Nov; 109(5):912-7. PubMed ID: 18976084 [TBL] [Abstract][Full Text] [Related]
17. A quantitative model of the cerebral windkessel and its relevance to disorders of intracranial dynamics. Egnor M; Yang L; Mani RM; Fiore SM; Djurić PM J Neurosurg Pediatr; 2023 Sep; 32(3):302-311. PubMed ID: 37382303 [TBL] [Abstract][Full Text] [Related]
18. Effects of ventriculoperitoneal shunt removal on cerebral oxygenation and brain compliance in chronic obstructive hydrocephalus. Fukuhara T; Luciano MG; Brant CL; Klauscie J J Neurosurg; 2001 Apr; 94(4):573-81. PubMed ID: 11302655 [TBL] [Abstract][Full Text] [Related]
19. [Special artificial respiration procedures and intracranial pressure. Animal experiment studies, development and use of a new pressure measuring technic, clinical aspects]. Schedl R Wien Klin Wochenschr Suppl; 1985; 157():1-22. PubMed ID: 3922125 [TBL] [Abstract][Full Text] [Related]
20. Characterisation of the intracranial pressure waveform during infusion studies by means of central tendency measure. Santamarta D; Abásolo D; Martínez-Madrigal M; Hornero R Acta Neurochir (Wien); 2012 Sep; 154(9):1595-602. PubMed ID: 22805895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]