BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 20672955)

  • 1. Efficacy and limitations of intraoperative spinal cord monitoring using nasopharyngeal tube electrodes.
    Yamamoto N; Kobashi H; Shiba M; Itoh T
    J Neurosurg Spine; 2010 Aug; 13(2):200-10. PubMed ID: 20672955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The diagnostic value of multimodal intraoperative monitoring (MIOM) during spine surgery: a prospective study of 1,017 patients.
    Sutter M; Eggspuehler A; Grob D; Jeszenszky D; Benini A; Porchet F; Mueller A; Dvorak J
    Eur Spine J; 2007 Nov; 16 Suppl 2(Suppl 2):S162-70. PubMed ID: 17665225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similarities and differences in cervical and thoracolumbar multisegmental motor responses and the combined use for testing spinal circuitries.
    Sabbahi MA; Uzun S; Ovak Bittar F; Sengul Y
    J Spinal Cord Med; 2014 Jul; 37(4):401-13. PubMed ID: 24621020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimodal intraoperative monitoring: an overview and proposal of methodology based on 1,017 cases.
    Sutter M; Eggspuehler A; Muller A; Dvorak J
    Eur Spine J; 2007 Nov; 16 Suppl 2(Suppl 2):S153-61. PubMed ID: 17653777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Timing-dependent synergies between motor cortex and posterior spinal stimulation in humans.
    McIntosh JR; Joiner EF; Goldberg JL; Greenwald P; Dionne AC; Murray LM; Thuet E; Modik O; Shelkov E; Lombardi JM; Sardar ZM; Lehman RA; Chan AK; Riew KD; Harel NY; Virk MS; Mandigo C; Carmel JB
    J Physiol; 2024 Jun; 602(12):2961-2983. PubMed ID: 38758005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basic methodological principles of multimodal intraoperative monitoring during spine surgeries.
    Deletis V
    Eur Spine J; 2007 Nov; 16 Suppl 2(Suppl 2):S147-52. PubMed ID: 17623112
    [No Abstract]   [Full Text] [Related]  

  • 7. Spinal cord-evoked potentials and muscle responses evoked by transcranial magnetic stimulation in 10 awake human subjects.
    Houlden DA; Schwartz ML; Tator CH; Ashby P; MacKay WA
    J Neurosci; 1999 Mar; 19(5):1855-62. PubMed ID: 10024369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping lumbar efferent and afferent spinal circuitries via paddle array in a porcine model.
    Steele AG; Taccola G; Frazier AM; Manzella M; Hogan M; Horner PJ; Faraji AH; Sayenko DG
    J Neurosci Methods; 2024 May; 405():110104. PubMed ID: 38447914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timing dependent synergies between motor cortex and posterior spinal stimulation in humans.
    McIntosh JR; Joiner EF; Goldberg JL; Greenwald P; Murray LM; Thuet E; Modik O; Shelkov E; Lombardi JM; Sardar ZM; Lehman RA; Chan AK; Riew KD; Harel NY; Virk MS; Mandigo C; Carmel JB
    medRxiv; 2023 Dec; ():. PubMed ID: 37645795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodal intraoperative monitoring (MIOM) during 409 lumbosacral surgical procedures in 409 patients.
    Sutter MA; Eggspuehler A; Grob D; Porchet F; Jeszenszky D; Dvorak J
    Eur Spine J; 2007 Nov; 16 Suppl 2(Suppl 2):S221-8. PubMed ID: 17912559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implantation of Surgical Paddle Electrodes Using Percutaneous Biportal-Endoscopic Technique for Spinal Cord Stimulation: An Anatomical Feasibility Study in Human Cadavers.
    Li C; Jiang Y; Liu T; Yuan L; Luo C; Yu Y
    Pain Physician; 2023 Nov; 26(7):E805-E813. PubMed ID: 37976487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor-evoked potential monitoring from urinary sphincter muscle during pediatric untethering surgery: a case series.
    Ogawa Y; Hayashi H; Sasaki R; Takatani T; Oi A; Uemura K; Kawaguchi M
    Childs Nerv Syst; 2023 Aug; 39(8):2147-2153. PubMed ID: 36890423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. lVentral tethering-is the prognosis worse than in dorsal tethering in the dysraphic spine?
    Sandip C; Shankar DA; Syed K
    Childs Nerv Syst; 2024 May; ():. PubMed ID: 38743268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro investigation of heat transfer in calf spinal cord during polymethylmethacrylate application for vertebral body reconstruction.
    Aydin S; Bozdağ E; Sünbüloğlu E; Unalan H; Hanci M; Aydingöz O; Kuday C
    Eur Spine J; 2006 Mar; 15(3):341-6. PubMed ID: 15912351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. About combined cervical and thoracic spinal cord stimulation.
    Desse N; Fawaz R; Beucler N
    Pain Pract; 2024 Apr; 24(4):690-691. PubMed ID: 38170344
    [No Abstract]   [Full Text] [Related]  

  • 16. Bilateral epidural D-wave monitoring during resection of an eccentric cervical astrocytoma with evidence of asymmetrical corticospinal desynchronization.
    Hamer RP; Chen A; Gogos A
    Br J Neurosurg; 2024 May; ():1-7. PubMed ID: 38818752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal motor mapping by epidural stimulation of lumbosacral posterior roots in humans.
    Hofstoetter US; Perret I; Bayart A; Lackner P; Binder H; Freundl B; Minassian K
    iScience; 2021 Jan; 24(1):101930. PubMed ID: 33409476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and applications of evoked responses during epidural electrical stimulation.
    Verma N; Romanauski B; Lam D; Lujan L; Blanz S; Ludwig K; Lempka S; Shoffstall A; Knudson B; Nishiyama Y; Hao J; Park HJ; Ross E; Lavrov I; Zhang M
    Bioelectron Med; 2023 Feb; 9(1):5. PubMed ID: 36855060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MRI mapping of hemodynamics in the human spinal cord.
    Hemmerling KJ; Hoggarth MA; Sandhu MS; Parrish TB; Bright MG
    bioRxiv; 2024 Feb; ():. PubMed ID: 38464194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of electrode position marking procedures on the cranial surface.
    Fabregat-Sanjuan A; Pàmies-Vilà R; Rigo-Vidal A; Pascual-Rubio V
    Brain Behav; 2023 Oct; 13(10):e3187. PubMed ID: 37534627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.