These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20672996)

  • 1. Functional evaluation of artificial skeletal muscle tissue constructs fabricated by a magnetic force-based tissue engineering technique.
    Yamamoto Y; Ito A; Fujita H; Nagamori E; Kawabe Y; Kamihira M
    Tissue Eng Part A; 2011 Jan; 17(1-2):107-14. PubMed ID: 20672996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells.
    Sato M; Ito A; Kawabe Y; Nagamori E; Kamihira M
    J Biosci Bioeng; 2011 Sep; 112(3):273-8. PubMed ID: 21646045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of scaffold-free contractile skeletal muscle tissue using magnetite-incorporated myogenic C2C12 cells.
    Fujita H; Shimizu K; Yamamoto Y; Ito A; Kamihira M; Nagamori E
    J Tissue Eng Regen Med; 2010 Aug; 4(6):437-43. PubMed ID: 20084621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel method for fabrication of skeletal muscle construct from the C2C12 myoblast cell line using serum-free medium AIM-V.
    Fujita H; Shimizu K; Nagamori E
    Biotechnol Bioeng; 2009 Aug; 103(5):1034-41. PubMed ID: 19350625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of artificial skeletal muscle tissues by a magnetic force-based tissue engineering technique.
    Yamamoto Y; Ito A; Kato M; Kawabe Y; Shimizu K; Fujita H; Nagamori E; Kamihira M
    J Biosci Bioeng; 2009 Dec; 108(6):538-43. PubMed ID: 19914590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and fabrication of heart muscle using scaffold-based tissue engineering.
    Blan NR; Birla RK
    J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment.
    Coletti D; Teodori L; Albertini MC; Rocchi M; Pristerà A; Fini M; Molinaro M; Adamo S
    Cytometry A; 2007 Oct; 71(10):846-56. PubMed ID: 17694560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of contractile force generation of artificial skeletal muscle tissues by mild and transient heat treatment.
    Sato M; Ikeda K; Kanno S; Ito A; Kawabe Y; Kamihira M
    Curr Pharm Biotechnol; 2014; 14(13):1083-7. PubMed ID: 24725127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic mechanical stimulation favors myosin heavy chain accumulation in engineered skeletal muscle constructs.
    Candiani G; Riboldi SA; Sadr N; Lorenzoni S; Neuenschwander P; Montevecchi FM; Mantero S
    J Appl Biomater Biomech; 2010; 8(2):68-75. PubMed ID: 20740468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of human myoblast cultures for tissue engineering.
    Stern-Straeter J; Bran G; Riedel F; Sauter A; Hörmann K; Goessler UR
    Int J Mol Med; 2008 Jan; 21(1):49-56. PubMed ID: 18097615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue engineering using magnetite nanoparticles.
    Ito A; Kamihira M
    Prog Mol Biol Transl Sci; 2011; 104():355-95. PubMed ID: 22093224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for the involvement of cathepsin B in skeletal myoblast differentiation.
    Jane DT; DaSilva L; Koblinski J; Horwitz M; Sloane BF; Dufresne MJ
    J Cell Biochem; 2002; 84(3):520-31. PubMed ID: 11813257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Androgen receptor expression during C2C12 skeletal muscle cell line differentiation.
    Wannenes F; Caprio M; Gatta L; Fabbri A; Bonini S; Moretti C
    Mol Cell Endocrinol; 2008 Sep; 292(1-2):11-9. PubMed ID: 18588941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives.
    Shimizu K; Fujita H; Nagamori E
    Biotechnol Bioeng; 2009 Jun; 103(3):631-8. PubMed ID: 19189396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetically directed self-assembly of electrospun superparamagnetic fibrous bundles to form three-dimensional tissues with a highly ordered architecture.
    Lee WY; Cheng WY; Yeh YC; Lai CH; Hwang SM; Hsiao CW; Huang CW; Chen MC; Sung HW
    Tissue Eng Part C Methods; 2011 Jun; 17(6):651-61. PubMed ID: 21375393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of B-cell lymphoma 2 gene transfer to myoblast cells on skeletal muscle tissue formation using magnetic force-based tissue engineering.
    Sato M; Ito A; Akiyama H; Kawabe Y; Kamihira M
    Tissue Eng Part A; 2013 Jan; 19(1-2):307-15. PubMed ID: 23088454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endogenous expression and localization of myostatin and its relation to myosin heavy chain distribution in C2C12 skeletal muscle cells.
    Artaza JN; Bhasin S; Mallidis C; Taylor W; Ma K; Gonzalez-Cadavid NF
    J Cell Physiol; 2002 Feb; 190(2):170-9. PubMed ID: 11807821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulating fibrinolysis to engineer skeletal muscle from the C2C12 cell line.
    Khodabukus A; Baar K
    Tissue Eng Part C Methods; 2009 Sep; 15(3):501-11. PubMed ID: 19191517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. USP19-deubiquitinating enzyme regulates levels of major myofibrillar proteins in L6 muscle cells.
    Sundaram P; Pang Z; Miao M; Yu L; Wing SS
    Am J Physiol Endocrinol Metab; 2009 Dec; 297(6):E1283-90. PubMed ID: 19773579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of serum-free culture conditions on skeletal muscle differentiation in a tissue-engineered model.
    Gawlitta D; Boonen KJ; Oomens CW; Baaijens FP; Bouten CV
    Tissue Eng Part A; 2008 Jan; 14(1):161-71. PubMed ID: 18333814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.