These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20672996)

  • 21. Defined electrical stimulation emphasizing excitability for the development and testing of engineered skeletal muscle.
    Khodabukus A; Baar K
    Tissue Eng Part C Methods; 2012 May; 18(5):349-57. PubMed ID: 22092374
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advanced maturation by electrical stimulation: Differences in response between C2C12 and primary muscle progenitor cells.
    Langelaan ML; Boonen KJ; Rosaria-Chak KY; van der Schaft DW; Post MJ; Baaijens FP
    J Tissue Eng Regen Med; 2011 Jul; 5(7):529-39. PubMed ID: 21695794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. C2C12 co-culture on a fibroblast substratum enables sustained survival of contractile, highly differentiated myotubes with peripheral nuclei and adult fast myosin expression.
    Cooper ST; Maxwell AL; Kizana E; Ghoddusi M; Hardeman EC; Alexander IE; Allen DG; North KN
    Cell Motil Cytoskeleton; 2004 Jul; 58(3):200-11. PubMed ID: 15146538
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of complex three-dimensional tissue architectures using a magnetic force-based cell patterning technique.
    Akiyama H; Ito A; Kawabe Y; Kamihira M
    Biomed Microdevices; 2009 Aug; 11(4):713-21. PubMed ID: 19212817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression of perlecan, a proteoglycan that binds myogenic inhibitory basic fibroblast growth factor, is down regulated during skeletal muscle differentiation.
    Larraín J; Alvarez J; Hassell JR; Brandan E
    Exp Cell Res; 1997 Aug; 234(2):405-12. PubMed ID: 9260911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergy between myogenic and non-myogenic cells in a 3D tissue-engineered craniofacial skeletal muscle construct.
    Brady MA; Lewis MP; Mudera V
    J Tissue Eng Regen Med; 2008 Oct; 2(7):408-17. PubMed ID: 18720445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The stimulation of myoblast differentiation by electrically conductive sub-micron fibers.
    Jun I; Jeong S; Shin H
    Biomaterials; 2009 Apr; 30(11):2038-47. PubMed ID: 19147222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tissue-engineered axially vascularized contractile skeletal muscle.
    Borschel GH; Dow DE; Dennis RG; Brown DL
    Plast Reconstr Surg; 2006 Jun; 117(7):2235-42. PubMed ID: 16772923
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The E protein HEB is preferentially expressed in developing muscle.
    Conway K; Pin C; Kiernan JA; Merrifield P
    Differentiation; 2004 Sep; 72(7):327-40. PubMed ID: 15554944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of a combined mechanical stimulation protocol: Value for skeletal muscle tissue engineering.
    Boonen KJ; Langelaan ML; Polak RB; van der Schaft DW; Baaijens FP; Post MJ
    J Biomech; 2010 May; 43(8):1514-21. PubMed ID: 20189177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetically engineered angiogenic cell sheets using magnetic force-based gene delivery and tissue fabrication techniques.
    Akiyama H; Ito A; Kawabe Y; Kamihira M
    Biomaterials; 2010 Feb; 31(6):1251-9. PubMed ID: 19942286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyclosporin-A inhibits stretch-induced changes in myosin heavy chain expression in C2C12 skeletal muscle cells.
    Rauch C; Loughna PT
    Cell Biochem Funct; 2006; 24(1):55-61. PubMed ID: 15584088
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of skeletal muscle constructs by topographic activation of cell alignment.
    Zhao Y; Zeng H; Nam J; Agarwal S
    Biotechnol Bioeng; 2009 Feb; 102(2):624-31. PubMed ID: 18958861
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Force characteristics of in vivo tissue-engineered myocardial constructs using varying cell seeding densities.
    Birla R; Dhawan V; Huang YC; Lytle I; Tiranathanagul K; Brown D
    Artif Organs; 2008 Sep; 32(9):684-91. PubMed ID: 18684210
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlled differentiation of myoblast cells into fast and slow muscle fibers.
    Matsuoka Y; Inoue A
    Cell Tissue Res; 2008 Apr; 332(1):123-32. PubMed ID: 18278513
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vascularized three-dimensional skeletal muscle tissue-engineering.
    Saxena AK; Willital GH; Vacanti JP
    Biomed Mater Eng; 2001; 11(4):275-81. PubMed ID: 11790859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of functional cardiac, skeletal, and smooth muscle pumps in vitro.
    Evers R; Khait L; Birla RK
    Artif Organs; 2011 Jan; 35(1):69-74. PubMed ID: 20618224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of Gα(z) in C2C12 cells restrains myogenic differentiation.
    Mei H; Ho MK; Yung LY; Wu Z; Ip NY; Wong YH
    Cell Signal; 2011 Feb; 23(2):389-97. PubMed ID: 20946953
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial differences of cellular origins and in vivo hypoxia modify contractile properties of pulmonary artery smooth muscle cells: lessons for arterial tissue engineering.
    Hall SM; Soueid A; Smith T; Brown RA; Haworth SG; Mudera V
    J Tissue Eng Regen Med; 2007; 1(4):287-95. PubMed ID: 18038419
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fine-tuning of substrate architecture and surface chemistry promotes muscle tissue development.
    Guex AG; Kocher FM; Fortunato G; Körner E; Hegemann D; Carrel TP; Tevaearai HT; Giraud MN
    Acta Biomater; 2012 Apr; 8(4):1481-9. PubMed ID: 22266032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.