These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 20673012)
1. Chloroplasts as expression platforms for plant-produced vaccines. Cardi T; Lenzi P; Maliga P Expert Rev Vaccines; 2010 Aug; 9(8):893-911. PubMed ID: 20673012 [TBL] [Abstract][Full Text] [Related]
2. Enhanced chloroplast transgene expression in a nuclear mutant of Chlamydomonas. Michelet L; Lefebvre-Legendre L; Burr SE; Rochaix JD; Goldschmidt-Clermont M Plant Biotechnol J; 2011 Jun; 9(5):565-74. PubMed ID: 20809927 [TBL] [Abstract][Full Text] [Related]
3. Transgenic plastids in basic research and plant biotechnology. Bock R J Mol Biol; 2001 Sep; 312(3):425-38. PubMed ID: 11563907 [TBL] [Abstract][Full Text] [Related]
4. Optimization of the expression of the HIV fusion inhibitor cyanovirin-N from the tobacco plastid genome. Elghabi Z; Karcher D; Zhou F; Ruf S; Bock R Plant Biotechnol J; 2011 Jun; 9(5):599-608. PubMed ID: 21309998 [TBL] [Abstract][Full Text] [Related]
5. Transgenic chloroplasts are efficient sites for high-yield production of the vaccinia virus envelope protein A27L in plant cellsdagger. Rigano MM; Manna C; Giulini A; Pedrazzini E; Capobianchi M; Castilletti C; Di Caro A; Ippolito G; Beggio P; De Giuli Morghen C; Monti L; Vitale A; Cardi T Plant Biotechnol J; 2009 Aug; 7(6):577-91. PubMed ID: 19508274 [TBL] [Abstract][Full Text] [Related]
6. External control of transgene expression in tobacco plastids using the bacterial lac repressor. Mühlbauer SK; Koop HU Plant J; 2005 Sep; 43(6):941-6. PubMed ID: 16146531 [TBL] [Abstract][Full Text] [Related]
7. A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii. Bertalan I; Munder MC; Weiß C; Kopf J; Fischer D; Johanningmeier U J Biotechnol; 2015 Feb; 195():60-6. PubMed ID: 25554634 [TBL] [Abstract][Full Text] [Related]
8. Human papillomavirus vaccines in plants. Giorgi C; Franconi R; Rybicki EP Expert Rev Vaccines; 2010 Aug; 9(8):913-24. PubMed ID: 20673013 [TBL] [Abstract][Full Text] [Related]
9. Plant-derived vaccines and other therapeutics produced in contained systems. Franconi R; Demurtas OC; Massa S Expert Rev Vaccines; 2010 Aug; 9(8):877-92. PubMed ID: 20673011 [TBL] [Abstract][Full Text] [Related]
10. PharmaPlant: the new frontier in vaccines. Forward. Buonaguro FM; Butler-Ransohoff JE Expert Rev Vaccines; 2010 Aug; 9(8):805-7. PubMed ID: 20673004 [No Abstract] [Full Text] [Related]
11. Production of foreign proteins using plastid transformation. Scotti N; Rigano MM; Cardi T Biotechnol Adv; 2012; 30(2):387-97. PubMed ID: 21843626 [TBL] [Abstract][Full Text] [Related]
12. Current status of plant-made vaccines for veterinary purposes. Ling HY; Pelosi A; Walmsley AM Expert Rev Vaccines; 2010 Aug; 9(8):971-82. PubMed ID: 20673018 [TBL] [Abstract][Full Text] [Related]
13. Plastid transformation as an expression tool for plant-derived biopharmaceuticals. Scotti N; Cardi T Methods Mol Biol; 2012; 847():451-66. PubMed ID: 22351028 [TBL] [Abstract][Full Text] [Related]
14. A protocol for expression of foreign genes in chloroplasts. Verma D; Samson NP; Koya V; Daniell H Nat Protoc; 2008; 3(4):739-58. PubMed ID: 18388956 [TBL] [Abstract][Full Text] [Related]
15. Transfer of transformed chloroplasts from Nicotiana tabacum to the Lycium barbarum plants. Sytnik E; Komarnytsky I; Gleba Y; Kuchuk N Cell Biol Int; 2005 Jan; 29(1):71-5. PubMed ID: 15763502 [TBL] [Abstract][Full Text] [Related]
16. Engineering the plastid genome of Nicotiana sylvestris, a diploid model species for plastid genetics. Maliga P; Svab Z Methods Mol Biol; 2011; 701():37-50. PubMed ID: 21181523 [TBL] [Abstract][Full Text] [Related]
17. Expression systems and developments in plant-made vaccines. Rigano MM; Walmsley AM Immunol Cell Biol; 2005 Jun; 83(3):271-7. PubMed ID: 15877605 [TBL] [Abstract][Full Text] [Related]
18. Production of biopharmaceuticals and vaccines in plants via the chloroplast genome. Daniell H Biotechnol J; 2006 Oct; 1(10):1071-9. PubMed ID: 17004305 [TBL] [Abstract][Full Text] [Related]
19. Production of a recombinant bacterial lipoprotein in higher plant chloroplasts. Glenz K; Bouchon B; Stehle T; Wallich R; Simon MM; Warzecha H Nat Biotechnol; 2006 Jan; 24(1):76-7. PubMed ID: 16327810 [TBL] [Abstract][Full Text] [Related]
20. Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Oey M; Lohse M; Kreikemeyer B; Bock R Plant J; 2009 Feb; 57(3):436-45. PubMed ID: 18939966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]