These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 20673024)
1. Proliferation and differentiation of mesenchymal stem cell on collagen sponge reinforced with polypropylene/polyethylene terephthalate blend fibers. Mohajeri S; Hosseinkhani H; Ebrahimi NG; Nikfarjam L; Soleimani M; Kajbafzadeh AM Tissue Eng Part A; 2010 Dec; 16(12):3821-30. PubMed ID: 20673024 [TBL] [Abstract][Full Text] [Related]
2. Enhanced proliferation and osteogenic differentiation of rat mesenchymal stem cells in collagen sponge reinforced with different poly(ethylene terephthalate) fibers. Takamoto T; Hiraoka Y; Tabata Y J Biomater Sci Polym Ed; 2007; 18(7):865-81. PubMed ID: 17688745 [TBL] [Abstract][Full Text] [Related]
3. Proliferation of rat mesenchymal stem cells in collagen sponges reinforced with poly(ethylene terephthalate) fibers by stirring culture method. Takamoto T; Ichinohe N; Tabata Y J Biomater Sci Polym Ed; 2012; 23(13):1741-53. PubMed ID: 21943688 [TBL] [Abstract][Full Text] [Related]
4. Perfusion culture enhances osteogenic differentiation of rat mesenchymal stem cells in collagen sponge reinforced with poly(glycolic Acid) fiber. Hosseinkhani H; Inatsugu Y; Hiraoka Y; Inoue S; Tabata Y Tissue Eng; 2005; 11(9-10):1476-88. PubMed ID: 16259602 [TBL] [Abstract][Full Text] [Related]
5. Osteogenic differentiation of bone-marrow-derived stem cells cultured with mixed gelatin and chitooligosaccharide scaffolds. Ratanavaraporn J; Damrongsakkul S; Kanokpanont S; Yamamoto M; Tabata Y J Biomater Sci Polym Ed; 2011; 22(8):1083-98. PubMed ID: 20615314 [TBL] [Abstract][Full Text] [Related]
6. Human mesenchymal stem cells tissue development in 3D PET matrices. Grayson WL; Ma T; Bunnell B Biotechnol Prog; 2004; 20(3):905-12. PubMed ID: 15176898 [TBL] [Abstract][Full Text] [Related]
7. Differentiation of mesenchymal stem cells into osteoblasts on honeycomb collagen scaffolds. George J; Kuboki Y; Miyata T Biotechnol Bioeng; 2006 Oct; 95(3):404-11. PubMed ID: 16572435 [TBL] [Abstract][Full Text] [Related]
8. PGA-incorporated collagen: Toward a biodegradable composite scaffold for bone-tissue engineering. Toosi S; Naderi-Meshkin H; Kalalinia F; Peivandi MT; HosseinKhani H; Bahrami AR; Heirani-Tabasi A; Mirahmadi M; Behravan J J Biomed Mater Res A; 2016 Aug; 104(8):2020-8. PubMed ID: 27059133 [TBL] [Abstract][Full Text] [Related]
9. A collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite as a scaffold for cartilage tissue engineering. Ohyabu Y; Adegawa T; Yoshioka T; Ikoma T; Shinozaki K; Uemura T; Tanaka J J Biomater Sci Polym Ed; 2009; 20(13):1861-74. PubMed ID: 19793444 [TBL] [Abstract][Full Text] [Related]
10. Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and beta-tricalcium phosphate. Takahashi Y; Yamamoto M; Tabata Y Biomaterials; 2005 Jun; 26(17):3587-96. PubMed ID: 15621249 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional culture of human mesenchymal stem cells in a polyethylene terephthalate matrix. Cao Y; Li D; Shang C; Yang ST; Wang J; Wang X Biomed Mater; 2010 Dec; 5(6):065013. PubMed ID: 21079281 [TBL] [Abstract][Full Text] [Related]
12. Efficacy of hESC-MSCs in knitted silk-collagen scaffold for tendon tissue engineering and their roles. Chen JL; Yin Z; Shen WL; Chen X; Heng BC; Zou XH; Ouyang HW Biomaterials; 2010 Dec; 31(36):9438-51. PubMed ID: 20870282 [TBL] [Abstract][Full Text] [Related]
13. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Meinel L; Hofmann S; Karageorgiou V; Zichner L; Langer R; Kaplan D; Vunjak-Novakovic G Biotechnol Bioeng; 2004 Nov; 88(3):379-91. PubMed ID: 15486944 [TBL] [Abstract][Full Text] [Related]
14. Bone tissue engineering on patterned collagen films: an in vitro study. Ber S; Torun Köse G; Hasirci V Biomaterials; 2005 May; 26(14):1977-86. PubMed ID: 15576172 [TBL] [Abstract][Full Text] [Related]
15. Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds. Moroni L; Licht R; de Boer J; de Wijn JR; van Blitterswijk CA Biomaterials; 2006 Oct; 27(28):4911-22. PubMed ID: 16762409 [TBL] [Abstract][Full Text] [Related]
16. Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Soliman S; Pagliari S; Rinaldi A; Forte G; Fiaccavento R; Pagliari F; Franzese O; Minieri M; Di Nardo P; Licoccia S; Traversa E Acta Biomater; 2010 Apr; 6(4):1227-37. PubMed ID: 19887125 [TBL] [Abstract][Full Text] [Related]
17. Preparation of hybrid scaffold from fibrin and biodegradable polymer fiber. Hokugo A; Takamoto T; Tabata Y Biomaterials; 2006 Jan; 27(1):61-7. PubMed ID: 16000222 [TBL] [Abstract][Full Text] [Related]
18. In vitro response of the bone marrow-derived mesenchymal stem cells seeded in a type-I collagen-glycosaminoglycan scaffold for skin wound repair under the mechanical loading condition. Kobayashi M; Spector M Mol Cell Biomech; 2009 Dec; 6(4):217-27. PubMed ID: 19899445 [TBL] [Abstract][Full Text] [Related]
19. A cell leakproof PLGA-collagen hybrid scaffold for cartilage tissue engineering. Kawazoe N; Inoue C; Tateishi T; Chen G Biotechnol Prog; 2010; 26(3):819-26. PubMed ID: 20039440 [TBL] [Abstract][Full Text] [Related]
20. Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Yilgor P; Tuzlakoglu K; Reis RL; Hasirci N; Hasirci V Biomaterials; 2009 Jul; 30(21):3551-9. PubMed ID: 19361857 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]