BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20673025)

  • 1. Passive and active in vitro resorption of calcium and magnesium phosphate cements by osteoclastic cells.
    Grossardt C; Ewald A; Grover LM; Barralet JE; Gbureck U
    Tissue Eng Part A; 2010 Dec; 16(12):3687-95. PubMed ID: 20673025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mg:Ca ratio as regulating factor for osteoclastic in vitro resorption of struvite biocements.
    Blum C; Brückner T; Ewald A; Ignatius A; Gbureck U
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():111-119. PubMed ID: 28183587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro biodegradation of three brushite calcium phosphate cements by a macrophage cell-line.
    Xia Z; Grover LM; Huang Y; Adamopoulos IE; Gbureck U; Triffitt JT; Shelton RM; Barralet JE
    Biomaterials; 2006 Sep; 27(26):4557-65. PubMed ID: 16720039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resorption of monetite calcium phosphate cement by mouse bone marrow derived osteoclasts.
    Montazerolghaem M; Karlsson Ott M; Engqvist H; Melhus H; Rasmusson AJ
    Mater Sci Eng C Mater Biol Appl; 2015; 52():212-8. PubMed ID: 25953560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement.
    Klammert U; Reuther T; Blank M; Reske I; Barralet JE; Grover LM; Kübler AC; Gbureck U
    Acta Biomater; 2010 Apr; 6(4):1529-35. PubMed ID: 19837194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteoclastic resorption of calcium phosphates is potentiated in postosteogenic culture conditions.
    de Bruijn JD; Bovell YP; Davies JE; van Blitterswijk CA
    J Biomed Mater Res; 1994 Jan; 28(1):105-12. PubMed ID: 8126021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo degradation of low temperature calcium and magnesium phosphate ceramics in a heterotopic model.
    Klammert U; Ignatius A; Wolfram U; Reuther T; Gbureck U
    Acta Biomater; 2011 Sep; 7(9):3469-75. PubMed ID: 21658480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volumetric analysis of osteoclastic bioresorption of calcium phosphate ceramics with different solubilities.
    Winkler T; Hoenig E; Gildenhaar R; Berger G; Fritsch D; Janssen R; Morlock MM; Schilling AF
    Acta Biomater; 2010 Oct; 6(10):4127-35. PubMed ID: 20451677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strontium modified biocements with zero order release kinetics.
    Hamdan Alkhraisat M; Moseke C; Blanco L; Barralet JE; Lopez-Carbacos E; Gbureck U
    Biomaterials; 2008 Dec; 29(35):4691-7. PubMed ID: 18804862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cold-setting calcium- and magnesium phosphate matrices on protein expression in osteoblastic cells.
    Ewald A; Helmschrott K; Knebl G; Mehrban N; Grover LM; Gbureck U
    J Biomed Mater Res B Appl Biomater; 2011 Feb; 96(2):326-32. PubMed ID: 21210513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone regeneration capacity of magnesium phosphate cements in a large animal model.
    Kanter B; Vikman A; Brückner T; Schamel M; Gbureck U; Ignatius A
    Acta Biomater; 2018 Mar; 69():352-361. PubMed ID: 29409867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro degradation of electrodeposited calcium phosphate coatings by osteoclast-like cells.
    Long T; Hong F; Shen S; Wang L; Wang Y; Wang J
    Biomed Mater; 2012 Aug; 7(4):045012. PubMed ID: 22652553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of in vivo mineral bone cement degradation.
    Kanter B; Geffers M; Ignatius A; Gbureck U
    Acta Biomater; 2014 Jul; 10(7):3279-87. PubMed ID: 24769112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteoclastic resorption of calcium phosphate coatings applied with electrostatic spray deposition (ESD), in vitro.
    Siebers MC; Matsuzaka K; Walboomers XF; Leeuwenburgh SC; Wolke JG; Jansen JA
    J Biomed Mater Res A; 2005 Sep; 74(4):570-80. PubMed ID: 16025470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro degradation and in vivo resorption of dicalcium phosphate cement based grafts.
    Sheikh Z; Zhang YL; Grover L; Merle GE; Tamimi F; Barralet J
    Acta Biomater; 2015 Oct; 26():338-46. PubMed ID: 26300333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of RANKL-coated brushite cement to stimulate bone remodelling.
    Le Nihouannen D; Hacking SA; Gbureck U; Komarova SV; Barralet JE
    Biomaterials; 2008 Aug; 29(22):3253-9. PubMed ID: 18455230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing.
    Klammert U; Reuther T; Jahn C; Kraski B; Kübler AC; Gbureck U
    Acta Biomater; 2009 Feb; 5(2):727-34. PubMed ID: 18835228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biologically mediated resorption of brushite cement in vitro.
    Grover LM; Gbureck U; Wright AJ; Tremayne M; Barralet JE
    Biomaterials; 2006 Apr; 27(10):2178-85. PubMed ID: 16337265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strontium substitution in apatitic CaP cements effectively attenuates osteoclastic resorption but does not inhibit osteoclastogenesis.
    Schumacher M; Wagner AS; Kokesch-Himmelreich J; Bernhardt A; Rohnke M; Wenisch S; Gelinsky M
    Acta Biomater; 2016 Jun; 37():184-94. PubMed ID: 27084107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteoclastic differentiation and resorption is modulated by bioactive metal ions Co2+, Cu2+ and Cr3+ incorporated into calcium phosphate bone cements.
    Bernhardt A; Schamel M; Gbureck U; Gelinsky M
    PLoS One; 2017; 12(8):e0182109. PubMed ID: 28763481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.