These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20673161)

  • 1. The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics.
    Martins-de-Souza D; Harris LW; Guest PC; Bahn S
    Antioxid Redox Signal; 2011 Oct; 15(7):2067-79. PubMed ID: 20673161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress.
    Prabakaran S; Swatton JE; Ryan MM; Huffaker SJ; Huang JT; Griffin JL; Wayland M; Freeman T; Dudbridge F; Lilley KS; Karp NA; Hester S; Tkachev D; Mimmack ML; Yolken RH; Webster MJ; Torrey EF; Bahn S
    Mol Psychiatry; 2004 Jul; 9(7):684-97, 643. PubMed ID: 15098003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondria, synaptic plasticity, and schizophrenia.
    Ben-Shachar D; Laifenfeld D
    Int Rev Neurobiol; 2004; 59():273-96. PubMed ID: 15006492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skin fibroblast model to study an impaired glutathione synthesis: consequences of a genetic polymorphism on the proteome.
    Gysin R; Riederer IM; Cuénod M; Do KQ; Riederer BM
    Brain Res Bull; 2009 Apr; 79(1):46-52. PubMed ID: 19041695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic approaches to unravel the complexity of schizophrenia.
    Martins-de-Souza D; Guest PC; Rahmoune H; Bahn S
    Expert Rev Proteomics; 2012; 9(1):97-108. PubMed ID: 22292827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2-D DIGE analysis of liver and red blood cells provides further evidence for oxidative stress in schizophrenia.
    Prabakaran S; Wengenroth M; Lockstone HE; Lilley K; Leweke FM; Bahn S
    J Proteome Res; 2007 Jan; 6(1):141-9. PubMed ID: 17203958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabonomic studies of schizophrenia and psychotropic medications: focus on alterations in CNS energy homeostasis.
    Ma D; Guest PC; Bahn S
    Bioanalysis; 2009 Dec; 1(9):1615-26. PubMed ID: 21083107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain.
    Kaur P; Radotra B; Minz RW; Gill KD
    Neurotoxicology; 2007 Nov; 28(6):1208-19. PubMed ID: 17850875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteome analysis of schizophrenia brain tissue.
    Martins-De-Souza D; Dias-Neto E; Schmitt A; Falkai P; Gormanns P; Maccarrone G; Turck CW; Gattaz WF
    World J Biol Psychiatry; 2010 Mar; 11(2):110-20. PubMed ID: 20109112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
    Calabrese V; Lodi R; Tonon C; D'Agata V; Sapienza M; Scapagnini G; Mangiameli A; Pennisi G; Stella AM; Butterfield DA
    J Neurol Sci; 2005 Jun; 233(1-2):145-62. PubMed ID: 15896810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome and transcriptome analysis suggests oligodendrocyte dysfunction in schizophrenia.
    Martins-de-Souza D
    J Psychiatr Res; 2010 Feb; 44(3):149-56. PubMed ID: 19699489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress, mitochondrial bioenergetics, and cardiolipin in aging.
    Paradies G; Petrosillo G; Paradies V; Ruggiero FM
    Free Radic Biol Med; 2010 May; 48(10):1286-95. PubMed ID: 20176101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of L-carnitine.
    Silva-Adaya D; Pérez-De La Cruz V; Herrera-Mundo MN; Mendoza-Macedo K; Villeda-Hernández J; Binienda Z; Ali SF; Santamaría A
    J Neurochem; 2008 May; 105(3):677-89. PubMed ID: 18194214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring oxidative and nitrative modification of cellular proteins; a paradigm for identifying key disease related markers of oxidative stress.
    Murray J; Oquendo CE; Willis JH; Marusich MF; Capaldi RA
    Adv Drug Deliv Rev; 2008; 60(13-14):1497-503. PubMed ID: 18647628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders.
    Sas K; Robotka H; Toldi J; Vécsei L
    J Neurol Sci; 2007 Jun; 257(1-2):221-39. PubMed ID: 17462670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The human mitochondrial proteome: oxidative stress, protein modifications and oxidative phosphorylation.
    Gibson BW
    Int J Biochem Cell Biol; 2005 May; 37(5):927-34. PubMed ID: 15743667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Sod2 mutant mouse as a model for oxidative stress: a functional proteomics perspective.
    Lee YH; Lin Q; Boelsterli UA; Chung MC
    Mass Spectrom Rev; 2010; 29(2):179-96. PubMed ID: 19294730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial dysfunction in nonalcoholic steatohepatitis.
    Serviddio G; Bellanti F; Vendemiale G; Altomare E
    Expert Rev Gastroenterol Hepatol; 2011 Apr; 5(2):233-44. PubMed ID: 21476918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis.
    Ding Q; Vaynman S; Souda P; Whitelegge JP; Gomez-Pinilla F
    Eur J Neurosci; 2006 Sep; 24(5):1265-76. PubMed ID: 16987214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial dysfunction in brain aging: role of oxidative stress and cardiolipin.
    Paradies G; Petrosillo G; Paradies V; Ruggiero FM
    Neurochem Int; 2011 Mar; 58(4):447-57. PubMed ID: 21215780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.