These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 20673161)
1. The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics. Martins-de-Souza D; Harris LW; Guest PC; Bahn S Antioxid Redox Signal; 2011 Oct; 15(7):2067-79. PubMed ID: 20673161 [TBL] [Abstract][Full Text] [Related]
3. Mitochondria, synaptic plasticity, and schizophrenia. Ben-Shachar D; Laifenfeld D Int Rev Neurobiol; 2004; 59():273-96. PubMed ID: 15006492 [TBL] [Abstract][Full Text] [Related]
4. Skin fibroblast model to study an impaired glutathione synthesis: consequences of a genetic polymorphism on the proteome. Gysin R; Riederer IM; Cuénod M; Do KQ; Riederer BM Brain Res Bull; 2009 Apr; 79(1):46-52. PubMed ID: 19041695 [TBL] [Abstract][Full Text] [Related]
5. Proteomic approaches to unravel the complexity of schizophrenia. Martins-de-Souza D; Guest PC; Rahmoune H; Bahn S Expert Rev Proteomics; 2012; 9(1):97-108. PubMed ID: 22292827 [TBL] [Abstract][Full Text] [Related]
6. 2-D DIGE analysis of liver and red blood cells provides further evidence for oxidative stress in schizophrenia. Prabakaran S; Wengenroth M; Lockstone HE; Lilley K; Leweke FM; Bahn S J Proteome Res; 2007 Jan; 6(1):141-9. PubMed ID: 17203958 [TBL] [Abstract][Full Text] [Related]
7. Metabonomic studies of schizophrenia and psychotropic medications: focus on alterations in CNS energy homeostasis. Ma D; Guest PC; Bahn S Bioanalysis; 2009 Dec; 1(9):1615-26. PubMed ID: 21083107 [TBL] [Abstract][Full Text] [Related]
8. Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain. Kaur P; Radotra B; Minz RW; Gill KD Neurotoxicology; 2007 Nov; 28(6):1208-19. PubMed ID: 17850875 [TBL] [Abstract][Full Text] [Related]
13. Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of L-carnitine. Silva-Adaya D; Pérez-De La Cruz V; Herrera-Mundo MN; Mendoza-Macedo K; Villeda-Hernández J; Binienda Z; Ali SF; Santamaría A J Neurochem; 2008 May; 105(3):677-89. PubMed ID: 18194214 [TBL] [Abstract][Full Text] [Related]
14. Monitoring oxidative and nitrative modification of cellular proteins; a paradigm for identifying key disease related markers of oxidative stress. Murray J; Oquendo CE; Willis JH; Marusich MF; Capaldi RA Adv Drug Deliv Rev; 2008; 60(13-14):1497-503. PubMed ID: 18647628 [TBL] [Abstract][Full Text] [Related]
15. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. Sas K; Robotka H; Toldi J; Vécsei L J Neurol Sci; 2007 Jun; 257(1-2):221-39. PubMed ID: 17462670 [TBL] [Abstract][Full Text] [Related]
16. The human mitochondrial proteome: oxidative stress, protein modifications and oxidative phosphorylation. Gibson BW Int J Biochem Cell Biol; 2005 May; 37(5):927-34. PubMed ID: 15743667 [TBL] [Abstract][Full Text] [Related]
17. The Sod2 mutant mouse as a model for oxidative stress: a functional proteomics perspective. Lee YH; Lin Q; Boelsterli UA; Chung MC Mass Spectrom Rev; 2010; 29(2):179-96. PubMed ID: 19294730 [TBL] [Abstract][Full Text] [Related]