BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 20673228)

  • 1. Amphipathic antimicrobial peptides--from biophysics to therapeutics?
    Dempsey CE; Hawrani A; Howe RA; Walsh TR
    Protein Pept Lett; 2010 Nov; 17(11):1334-44. PubMed ID: 20673228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of low mammalian cell toxicity in a class of highly active antimicrobial amphipathic helical peptides.
    Hawrani A; Howe RA; Walsh TR; Dempsey CE
    J Biol Chem; 2008 Jul; 283(27):18636-45. PubMed ID: 18434320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure.
    Wieprecht T; Beyermann M; Seelig J
    Biochemistry; 1999 Aug; 38(32):10377-87. PubMed ID: 10441132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of cationic-hydrophobic peptides with lipid bilayers: a Monte Carlo simulation method.
    Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2007 Sep; 93(6):1858-71. PubMed ID: 17496025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding.
    Ramamoorthy A; Thennarasu S; Tan A; Gottipati K; Sreekumar S; Heyl DL; An FY; Shelburne CE
    Biochemistry; 2006 May; 45(20):6529-40. PubMed ID: 16700563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of cyclization of magainin 2 and melittin analogues on structure, function, and model membrane interactions: implication to their mode of action.
    Unger T; Oren Z; Shai Y
    Biochemistry; 2001 May; 40(21):6388-97. PubMed ID: 11371201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of RTA3 peptide binding to membranes and consequences for antimicrobial activity.
    Hawrani A; Howe RA; Walsh TR; Dempsey CE
    Biochim Biophys Acta; 2010 Jun; 1798(6):1254-62. PubMed ID: 20346912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides.
    Jiang Z; Vasil AI; Hale JD; Hancock RE; Vasil ML; Hodges RS
    Biopolymers; 2008; 90(3):369-83. PubMed ID: 18098173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Position-dependent hydrophobicity of the antimicrobial magainin peptide affects the mode of peptide-lipid interactions and selective toxicity.
    Tachi T; Epand RF; Epand RM; Matsuzaki K
    Biochemistry; 2002 Aug; 41(34):10723-31. PubMed ID: 12186559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini.
    Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M
    Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of the antimicrobial beta-peptide beta-17 with phospholipid vesicles differ from membrane interactions of magainins.
    Epand RF; Umezawa N; Porter EA; Gellman SH; Epand RM
    Eur J Biochem; 2003 Mar; 270(6):1240-8. PubMed ID: 12631282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-dependent charge density as a determinant of antimicrobial activity of peptide analogues of defensin.
    Bai Y; Liu S; Jiang P; Zhou L; Li J; Tang C; Verma C; Mu Y; Beuerman RW; Pervushin K
    Biochemistry; 2009 Aug; 48(30):7229-39. PubMed ID: 19580334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of antimicrobial activity against Listeria and cytotoxicity of native melittin and its mutant variants.
    Wu X; Singh AK; Wu X; Lyu Y; Bhunia AK; Narsimhan G
    Colloids Surf B Biointerfaces; 2016 Jul; 143():194-205. PubMed ID: 27011349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation studies of the interaction of antimicrobial peptides and lipid bilayers.
    La Rocca P; Biggin PC; Tieleman DP; Sansom MS
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):185-200. PubMed ID: 10590308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of interactions between hydrophobic residues on nonpolar faces is a key determinant in decreasing hemolysis and increasing antimicrobial activities of α-helical amphipathic peptides.
    Son M; Lee Y; Hwang H; Hyun S; Yu J
    ChemMedChem; 2013 Oct; 8(10):1638-42. PubMed ID: 23894079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain.
    Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M
    Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.