These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20673311)

  • 1. Functional identification of an outwardly rectifying pH- and anesthetic-sensitive leak K(+) conductance in hippocampal astrocytes.
    Chu KC; Chiu CD; Hsu TT; Hsieh YM; Huang YY; Lien CC
    Eur J Neurosci; 2010 Sep; 32(5):725-35. PubMed ID: 20673311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices.
    Zhou M; Xu G; Xie M; Zhang X; Schools GP; Ma L; Kimelberg HK; Chen H
    J Neurosci; 2009 Jul; 29(26):8551-64. PubMed ID: 19571146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid-sensitive TASK-like K+ conductances contribute to resting membrane potential and to orexin-induced membrane depolarization in rat thalamic paraventricular nucleus neurons.
    Doroshenko P; Renaud LP
    Neuroscience; 2009 Feb; 158(4):1560-70. PubMed ID: 19135504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of astroglial K+ channel expression in the developing hippocampus reveals a predominant role of the Kir4.1 subunit.
    Seifert G; Hüttmann K; Binder DK; Hartmann C; Wyczynski A; Neusch C; Steinhäuser C
    J Neurosci; 2009 Jun; 29(23):7474-88. PubMed ID: 19515915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 channels to the control of activity modes in thalamocortical neurons.
    Meuth SG; Budde T; Kanyshkova T; Broicher T; Munsch T; Pape HC
    J Neurosci; 2003 Jul; 23(16):6460-9. PubMed ID: 12878686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A TASK-like pH- and amine-sensitive 'leak' K+ conductance regulates neonatal rat facial motoneuron excitability in vitro.
    Larkman PM; Perkins EM
    Eur J Neurosci; 2005 Feb; 21(3):679-91. PubMed ID: 15733086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TASK channels contribute to the K+-dominated leak current regulating respiratory rhythm generation in vitro.
    Koizumi H; Smerin SE; Yamanishi T; Moorjani BR; Zhang R; Smith JC
    J Neurosci; 2010 Mar; 30(12):4273-84. PubMed ID: 20335463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TASK-like K+ channels mediate effects of 5-HT and extracellular pH in rat dorsal vagal neurones in vitro.
    Hopwood SE; Trapp S
    J Physiol; 2005 Oct; 568(Pt 1):145-54. PubMed ID: 16020457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postnatal development of ionic currents in rat hippocampal astrocytes in situ.
    Bordey A; Sontheimer H
    J Neurophysiol; 1997 Jul; 78(1):461-77. PubMed ID: 9242294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rat hippocampal astrocytes exhibit electrogenic sodium-bicarbonate co-transport.
    O'Connor ER; Sontheimer H; Ransom BR
    J Neurophysiol; 1994 Dec; 72(6):2580-9. PubMed ID: 7897475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of native rat cerebellar granule cell currents due to background K channel KCNK5 (TASK-2).
    Cotten JF; Zou HL; Liu C; Au JD; Yost CS
    Brain Res Mol Brain Res; 2004 Sep; 128(2):112-20. PubMed ID: 15363886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cGMP activates a pH-sensitive leak K+ current in the presumed cholinergic neuron of basal forebrain.
    Toyoda H; Saito M; Sato H; Dempo Y; Ohashi A; Hirai T; Maeda Y; Kaneko T; Kang Y
    J Neurophysiol; 2008 May; 99(5):2126-33. PubMed ID: 18287551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular K+ activates a K(+)- and H(+)-permeable conductance in frog taste receptor cells.
    Kolesnikov SS; Margolskee RF
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):415-32. PubMed ID: 9518702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophysical and pharmacological characteristics of native two-pore domain TASK channels in rat adrenal glomerulosa cells.
    Lotshaw DP
    J Membr Biol; 2006 Mar; 210(1):51-70. PubMed ID: 16794780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Background and tandem-pore potassium channels in magnocellular neurosecretory cells of the rat supraoptic nucleus.
    Han J; Gnatenco C; Sladek CD; Kim D
    J Physiol; 2003 Feb; 546(Pt 3):625-39. PubMed ID: 12562991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chloride and non-selective cation channels in unstimulated trout red blood cells.
    Egée S; Mignen O; Harvey BJ; Thomas S
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):213-24. PubMed ID: 9679175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional evidence of a role for two-pore domain potassium channels in rat mesenteric and pulmonary arteries.
    Gardener MJ; Johnson IT; Burnham MP; Edwards G; Heagerty AM; Weston AH
    Br J Pharmacol; 2004 May; 142(1):192-202. PubMed ID: 15066906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serotonergic raphe neurons express TASK channel transcripts and a TASK-like pH- and halothane-sensitive K+ conductance.
    Washburn CP; Sirois JE; Talley EM; Guyenet PG; Bayliss DA
    J Neurosci; 2002 Feb; 22(4):1256-65. PubMed ID: 11850453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of volatile and intravenous anesthetics on the activity of human TASK-1.
    Putzke C; Hanley PJ; Schlichthörl G; Preisig-Müller R; Rinné S; Anetseder M; Eckenhoff R; Berkowitz C; Vassiliou T; Wulf H; Eberhart L
    Am J Physiol Cell Physiol; 2007 Oct; 293(4):C1319-26. PubMed ID: 17699638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depolarization-induced alkalinization (DIA) in rat hippocampal astrocytes.
    Pappas CA; Ransom BR
    J Neurophysiol; 1994 Dec; 72(6):2816-26. PubMed ID: 7897491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.