These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 20673669)
1. Anisotropic and hyperelastic identification of in vitro human arteries from full-field optical measurements. Avril S; Badel P; Duprey A J Biomech; 2010 Nov; 43(15):2978-85. PubMed ID: 20673669 [TBL] [Abstract][Full Text] [Related]
2. Novel optical system for in vitro quantification of full surface strain fields in small arteries: II. Correction for refraction and illustrative results. Genovese K; Lee YU; Humphrey JD Comput Methods Biomech Biomed Engin; 2011 Mar; 14(3):227-37. PubMed ID: 21347913 [TBL] [Abstract][Full Text] [Related]
3. Mechanical characterization of anisotropic planar biological soft tissues using large indentation: a computational feasibility study. Cox MA; Driessen NJ; Bouten CV; Baaijens FP J Biomech Eng; 2006 Jun; 128(3):428-36. PubMed ID: 16706592 [TBL] [Abstract][Full Text] [Related]
4. Quantifying nonlinear anisotropic elastic material properties of biological tissue by use of membrane inflation. Bischoff JE; Drexler ES; Slifka AJ; McCowan CN Comput Methods Biomech Biomed Engin; 2009 Jun; 12(3):353-69. PubMed ID: 19396729 [TBL] [Abstract][Full Text] [Related]
5. Modelling and convergence in arterial wall simulations using a parallel FETI solution strategy. Brands D; Klawonn A; Rheinbach O; Schröder J Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):569-83. PubMed ID: 18608341 [TBL] [Abstract][Full Text] [Related]
6. A finite element updating approach for identification of the anisotropic hyperelastic properties of normal and diseased aortic walls from 4D ultrasound strain imaging. Wittek A; Derwich W; Karatolios K; Fritzen CP; Vogt S; Schmitz-Rixen T; Blase C J Mech Behav Biomed Mater; 2016 May; 58():122-138. PubMed ID: 26455809 [TBL] [Abstract][Full Text] [Related]
7. Novel optical system for in vitro quantification of full surface strain fields in small arteries: I. Theory and design. Genovese K; Lee YU; Humphrey JD Comput Methods Biomech Biomed Engin; 2011 Mar; 14(3):213-25. PubMed ID: 21347912 [TBL] [Abstract][Full Text] [Related]
8. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin. Groves RB; Coulman SA; Birchall JC; Evans SL J Mech Behav Biomed Mater; 2013 Feb; 18():167-80. PubMed ID: 23274398 [TBL] [Abstract][Full Text] [Related]
9. Numerical modelling of fracture in human arteries. Ferrara A; Pandolfi A Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):553-67. PubMed ID: 19230149 [TBL] [Abstract][Full Text] [Related]
10. Role of elastin anisotropy in structural strain energy functions of arterial tissue. Rezakhaniha R; Fonck E; Genoud C; Stergiopulos N Biomech Model Mechanobiol; 2011 Jul; 10(4):599-611. PubMed ID: 21058025 [TBL] [Abstract][Full Text] [Related]
11. Mechanical identification of layer-specific properties of mouse carotid arteries using 3D-DIC and a hyperelastic anisotropic constitutive model. Badel P; Avril S; Lessner S; Sutton M Comput Methods Biomech Biomed Engin; 2012; 15(1):37-48. PubMed ID: 21749226 [TBL] [Abstract][Full Text] [Related]
13. Assessing the use of the "opening angle method" to enforce residual stresses in patient-specific arteries. Alastrué V; Peña E; Martínez MA; Doblaré M Ann Biomed Eng; 2007 Oct; 35(10):1821-37. PubMed ID: 17638082 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of biaxial tension tests of soft tissues. Bursa J; Zemanek M Stud Health Technol Inform; 2008; 133():45-55. PubMed ID: 18376012 [TBL] [Abstract][Full Text] [Related]
15. Regional mechanical properties and stress analysis of the human anterior lens capsule. Pedrigi RM; David G; Dziezyc J; Humphrey JD Vision Res; 2007 Jun; 47(13):1781-9. PubMed ID: 17467027 [TBL] [Abstract][Full Text] [Related]
16. An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization. Speirs DC; de Souza Neto EA; Perić D J Biomech; 2008 Aug; 41(12):2673-80. PubMed ID: 18674766 [TBL] [Abstract][Full Text] [Related]
17. Hyperelastic behavior of porcine aorta segment under extension-inflation tests fitted with various phenomenological models. Veljković DŽ; Ranković VJ; Pantović SB; Rosić MA; Kojić MR Acta Bioeng Biomech; 2014; 16(3):37-45. PubMed ID: 25308095 [TBL] [Abstract][Full Text] [Related]
18. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament. Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853 [TBL] [Abstract][Full Text] [Related]
19. Nonlinear anisotropic stress analysis of anatomically realistic cerebral aneurysms. Ma B; Lu J; Harbaugh RE; Raghavan ML J Biomech Eng; 2007 Feb; 129(1):88-96. PubMed ID: 17227102 [TBL] [Abstract][Full Text] [Related]
20. Axial prestretch and circumferential distensibility in biomechanics of abdominal aorta. Horný L; Netušil M; Voňavková T Biomech Model Mechanobiol; 2014 Aug; 13(4):783-99. PubMed ID: 24136338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]