BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 20674010)

  • 1. The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model.
    Shimomura K; Ando W; Tateishi K; Nansai R; Fujie H; Hart DA; Kohda H; Kita K; Kanamoto T; Mae T; Nakata K; Shino K; Yoshikawa H; Nakamura N
    Biomaterials; 2010 Nov; 31(31):8004-11. PubMed ID: 20674010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells.
    Ando W; Tateishi K; Hart DA; Katakai D; Tanaka Y; Nakata K; Hashimoto J; Fujie H; Shino K; Yoshikawa H; Nakamura N
    Biomaterials; 2007 Dec; 28(36):5462-70. PubMed ID: 17854887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chondrogenic potential of subpopulations of cells expressing mesenchymal stem cell markers derived from human synovial membranes.
    Arufe MC; De la Fuente A; Fuentes I; de Toro FJ; Blanco FJ
    J Cell Biochem; 2010 Nov; 111(4):834-45. PubMed ID: 20665538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repair of meniscal lesions using a scaffold-free tissue-engineered construct derived from allogenic synovial MSCs in a miniature swine model.
    Moriguchi Y; Tateishi K; Ando W; Shimomura K; Yonetani Y; Tanaka Y; Kita K; Hart DA; Gobbi A; Shino K; Yoshikawa H; Nakamura N
    Biomaterials; 2013 Mar; 34(9):2185-93. PubMed ID: 23261221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved cartilage regeneration utilizing mesenchymal stem cells in TGF-beta1 gene-activated scaffolds.
    Diao H; Wang J; Shen C; Xia S; Guo T; Dong L; Zhang C; Chen J; Zhao J; Zhang J
    Tissue Eng Part A; 2009 Sep; 15(9):2687-98. PubMed ID: 19216641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone.
    Kume S; Kato S; Yamagishi S; Inagaki Y; Ueda S; Arima N; Okawa T; Kojiro M; Nagata K
    J Bone Miner Res; 2005 Sep; 20(9):1647-58. PubMed ID: 16059636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum.
    Nimura A; Muneta T; Koga H; Mochizuki T; Suzuki K; Makino H; Umezawa A; Sekiya I
    Arthritis Rheum; 2008 Feb; 58(2):501-10. PubMed ID: 18240254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage.
    Dickhut A; Pelttari K; Janicki P; Wagner W; Eckstein V; Egermann M; Richter W
    J Cell Physiol; 2009 Apr; 219(1):219-26. PubMed ID: 19107842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Repair of articular cartilage defects with "two-phase" tissue engineered cartilage constructed by autologous marrow mesenchymal stem cells and "two-phase" allogeneic bone matrix gelatin].
    Yin Z; Zhang L; Wang J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Aug; 19(8):652-7. PubMed ID: 16130396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary study of mesenchymal stem cells-seeded type I collagen-glycosaminoglycan matrices for cartilage repair.
    Xiang Z; Hu W; Kong Q; Zhou H; Zhang X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2006 Feb; 20(2):148-54. PubMed ID: 16529325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model.
    Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z
    J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo.
    Han SH; Kim YH; Park MS; Kim IA; Shin JW; Yang WI; Jee KS; Park KD; Ryu GH; Lee JW
    J Biomed Mater Res A; 2008 Dec; 87(4):850-61. PubMed ID: 18200543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis.
    Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T
    Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The inductive effect of bone morphogenetic protein-4 on chondral-lineage differentiation and in situ cartilage repair.
    Jiang Y; Chen LK; Zhu DC; Zhang GR; Guo C; Qi YY; Ouyang HW
    Tissue Eng Part A; 2010 May; 16(5):1621-32. PubMed ID: 20001220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced early tissue regeneration after matrix-assisted autologous mesenchymal stem cell transplantation in full thickness chondral defects in a minipig model.
    Jung M; Kaszap B; Redöhl A; Steck E; Breusch S; Richter W; Gotterbarm T
    Cell Transplant; 2009; 18(8):923-32. PubMed ID: 19523325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone.
    Shimomura K; Moriguchi Y; Ando W; Nansai R; Fujie H; Hart DA; Gobbi A; Kita K; Horibe S; Shino K; Yoshikawa H; Nakamura N
    Tissue Eng Part A; 2014 Sep; 20(17-18):2291-304. PubMed ID: 24655056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coculture of equine mesenchymal stem cells and mature equine articular chondrocytes results in improved chondrogenic differentiation of the stem cells.
    Lettry V; Hosoya K; Takagi S; Okumura M
    Jpn J Vet Res; 2010 May; 58(1):5-15. PubMed ID: 20645581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of Scaffold-Free Tissue-Engineered Constructs Derived from Human Synovial Mesenchymal Stem Cells Under Low Oxygen Tension Enhances Their Chondrogenic Differentiation Capacity.
    Yasui Y; Chijimatsu R; Hart DA; Koizumi K; Sugita N; Shimomura K; Myoui A; Yoshikawa H; Nakamura N
    Tissue Eng Part A; 2016 Mar; 22(5-6):490-500. PubMed ID: 26974507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A preliminary study comparing the use of allogenic chondrogenic pre-differentiated and undifferentiated mesenchymal stem cells for the repair of full thickness articular cartilage defects in rabbits.
    Dashtdar H; Rothan HA; Tay T; Ahmad RE; Ali R; Tay LX; Chong PP; Kamarul T
    J Orthop Res; 2011 Sep; 29(9):1336-42. PubMed ID: 21445989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.
    Wang Y; Kim UJ; Blasioli DJ; Kim HJ; Kaplan DL
    Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.