These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 20674298)

  • 1. Kinetics of coacervation transition versus nanoparticle formation in chitosan-sodium tripolyphosphate solutions.
    Kaloti M; Bohidar HB
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):165-73. PubMed ID: 20674298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery.
    Gan Q; Wang T; Cochrane C; McCarron P
    Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):65-73. PubMed ID: 16024239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monodisperse chitosan nanoparticles for mucosal drug delivery.
    Zhang H; Oh M; Allen C; Kumacheva E
    Biomacromolecules; 2004; 5(6):2461-8. PubMed ID: 15530064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monovalent salt enhances colloidal stability during the formation of chitosan/tripolyphosphate microgels.
    Huang Y; Lapitsky Y
    Langmuir; 2011 Sep; 27(17):10392-9. PubMed ID: 21749043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: swelling kinetics and drug delivery properties.
    Lin WC; Yu DG; Yang MC
    Colloids Surf B Biointerfaces; 2005 Aug; 44(2-3):143-51. PubMed ID: 16054345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins.
    Hu B; Pan C; Sun Y; Hou Z; Ye H; Zeng X
    J Agric Food Chem; 2008 Aug; 56(16):7451-8. PubMed ID: 18627163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of galactosylated chitosan/tripolyphosphate nanoparticles and application as a gene carrier for targeting SMMC7721 cells.
    Jiang H; Wu H; Xu YL; Wang JZ; Zeng Y
    J Biosci Bioeng; 2011 Jun; 111(6):719-24. PubMed ID: 21334972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of nanoparticles formed by chitosan-caseinate interactions.
    Anal AK; Tobiassen A; Flanagan J; Singh H
    Colloids Surf B Biointerfaces; 2008 Jun; 64(1):104-10. PubMed ID: 18294821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate.
    Huang H; Yang X
    Biomacromolecules; 2004; 5(6):2340-6. PubMed ID: 15530050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and optimization of PMAA-chitosan-PEG nanoparticles for oral drug delivery.
    Pawar H; Douroumis D; Boateng JS
    Colloids Surf B Biointerfaces; 2012 Feb; 90():102-8. PubMed ID: 22037474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt-assisted mechanistic analysis of chitosan/tripolyphosphate micro- and nanogel formation.
    Huang Y; Lapitsky Y
    Biomacromolecules; 2012 Nov; 13(11):3868-76. PubMed ID: 23051024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique.
    Fan W; Yan W; Xu Z; Ni H
    Colloids Surf B Biointerfaces; 2012 Feb; 90():21-7. PubMed ID: 22014934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of cetyltrimethylammonium bromide on physicochemical properties and microstructures of chitosan-TPP nanoparticles in aqueous solutions.
    Bao H; Li L; Zhang H
    J Colloid Interface Sci; 2008 Dec; 328(2):270-7. PubMed ID: 18840381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release.
    Gan Q; Wang T
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):24-34. PubMed ID: 17555948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight on the formation of chitosan nanoparticles through ionotropic gelation with tripolyphosphate.
    Koukaras EN; Papadimitriou SA; Bikiaris DN; Froudakis GE
    Mol Pharm; 2012 Oct; 9(10):2856-62. PubMed ID: 22845012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chitosan in situ gelation for improved drug loading and retention in poloxamer 407 gels.
    Ur-Rehman T; Tavelin S; Gröbner G
    Int J Pharm; 2011 May; 409(1-2):19-29. PubMed ID: 21335076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyelectrolyte nanoparticles based on water-soluble chitosan-poly(L-aspartic acid)-polyethylene glycol for controlled protein release.
    Shu S; Zhang X; Teng D; Wang Z; Li C
    Carbohydr Res; 2009 Jul; 344(10):1197-204. PubMed ID: 19508912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of N,O-carboxymethyl chitosan nanoparticles as an insulin carrier.
    Lin CC; Lin CW
    Drug Deliv; 2009 Nov; 16(8):458-64. PubMed ID: 19839790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and study of cross-linked chitosan-N-poly(ethylene glycol) nanoparticles.
    Bodnar M; Hartmann JF; Borbely J
    Biomacromolecules; 2006 Nov; 7(11):3030-6. PubMed ID: 17096528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system.
    Krauland AH; Alonso MJ
    Int J Pharm; 2007 Aug; 340(1-2):134-42. PubMed ID: 17459620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.