BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 20674300)

  • 1. Computed tomography-magnetic resonance image registration in radiotherapy treatment planning.
    Brunt JN
    Clin Oncol (R Coll Radiol); 2010 Oct; 22(8):688-97. PubMed ID: 20674300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Image registration for radiation therapy: Practical aspects and quality control].
    Bonniaud G; Isambert A; Dhermain F; Beaudré A; Ferreira I; Ricard M; Lefkopoulos D
    Cancer Radiother; 2006 Sep; 10(5):222-30. PubMed ID: 16890471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of geometric distortion in 0.2T MRI on radiotherapy treatment planning of prostate cancer.
    Petersch B; Bogner J; Fransson A; Lorang T; Pötter R
    Radiother Oncol; 2004 Apr; 71(1):55-64. PubMed ID: 15066296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image fusion of CT and MRI data enables improved target volume definition in 3D-brachytherapy treatment planning.
    Krempien RC; Daeuber S; Hensley FW; Wannenmacher M; Harms W
    Brachytherapy; 2003; 2(3):164-71. PubMed ID: 15062139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantitative image quality comparison of four different image guided radiotherapy devices.
    Stützel J; Oelfke U; Nill S
    Radiother Oncol; 2008 Jan; 86(1):20-4. PubMed ID: 18031854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of MR image distortion for radiotherapy treatment planning of prostate cancer.
    Chen Z; Ma CM; Paskalev K; Li J; Yang J; Richardson T; Palacio L; Xu X; Chen L
    Phys Med Biol; 2006 Mar; 51(6):1393-403. PubMed ID: 16510951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance-based treatment planning for prostate intensity-modulated radiotherapy: creation of digitally reconstructed radiographs.
    Chen L; Nguyen TB; Jones E; Chen Z; Luo W; Wang L; Price RA; Pollack A; Ma CM
    Int J Radiat Oncol Biol Phys; 2007 Jul; 68(3):903-11. PubMed ID: 17544002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of manual vs. automated multimodality (CT-MRI) image registration for brain tumors.
    Sarkar A; Santiago RJ; Smith R; Kassaee A
    Med Dosim; 2005; 30(1):20-4. PubMed ID: 15749007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image-guided radiotherapy using a mobile kilovoltage x-ray device.
    Sorensen SP; Chow PE; Kriminski S; Medin PM; Solberg TD
    Med Dosim; 2006; 31(1):40-50. PubMed ID: 16551528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of similarity measures for reconstruction-based registration in image-guided radiotherapy and surgery.
    Skerl D; Tomazevic D; Likar B; Pernus F
    Int J Radiat Oncol Biol Phys; 2006 Jul; 65(3):943-53. PubMed ID: 16751077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A graphical user interface for automatic image registration software designed for radiotherapy treatment planning.
    Rajasekar D; Datta NR; Gupta RK; Rao SB
    Med Dosim; 2004; 29(4):239-46. PubMed ID: 15528064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of MRI in planning radiotherapy for gynaecological tumours.
    Barillot I; Reynaud-Bougnoux A
    Cancer Imaging; 2006 Jun; 6(1):100-6. PubMed ID: 16829471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Point: Principles of magnetic resonance imaging integration in a computed tomography-based radiotherapy workflow.
    Brock KK; Dawson LA
    Semin Radiat Oncol; 2014 Jul; 24(3):169-74. PubMed ID: 24931087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-body magnetic resonance imaging and positron emission tomography-computed tomography in oncology.
    Schmidt GP; Kramer H; Reiser MF; Glaser C
    Top Magn Reson Imaging; 2007 Jun; 18(3):193-202. PubMed ID: 17762383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic resonance imaging based digitally reconstructed radiographs, virtual simulation, and three-dimensional treatment planning for brain neoplasms.
    Ramsey CR; Oliver AL
    Med Phys; 1998 Oct; 25(10):1928-34. PubMed ID: 9800700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRI-based treatment planning with electron density information mapped from CT images: a preliminary study.
    Wang C; Chao M; Lee L; Xing L
    Technol Cancer Res Treat; 2008 Oct; 7(5):341-8. PubMed ID: 18783283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment planning of intracranial targets on MRI derived substitute CT data.
    Jonsson JH; Johansson A; Söderström K; Asklund T; Nyholm T
    Radiother Oncol; 2013 Jul; 108(1):118-22. PubMed ID: 23830190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New developments in MRI for target volume delineation in radiotherapy.
    Khoo VS; Joon DL
    Br J Radiol; 2006 Sep; 79 Spec No 1():S2-15. PubMed ID: 16980682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient and image data management in positron emission tomography-computed tomography for radiation therapy and therapy response assessment.
    Faasse T; Shreve P
    Semin Ultrasound CT MR; 2010 Dec; 31(6):480-9. PubMed ID: 21147375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic Review of Synthetic Computed Tomography Generation Methodologies for Use in Magnetic Resonance Imaging-Only Radiation Therapy.
    Johnstone E; Wyatt JJ; Henry AM; Short SC; Sebag-Montefiore D; Murray L; Kelly CG; McCallum HM; Speight R
    Int J Radiat Oncol Biol Phys; 2018 Jan; 100(1):199-217. PubMed ID: 29254773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.