These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 20674339)
1. Enhancing fermentative hydrogen production from sucrose. Perera KR; Nirmalakhandan N Bioresour Technol; 2010 Dec; 101(23):9137-43. PubMed ID: 20674339 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of dairy cattle manure as a supplement to improve net energy gain in fermentative hydrogen production from sucrose. Perera KR; Nirmalakhandan N Bioresour Technol; 2011 Sep; 102(18):8688-95. PubMed ID: 21376579 [TBL] [Abstract][Full Text] [Related]
3. Performance characteristics of a two-stage dark fermentative system producing hydrogen and methane continuously. Kyazze G; Dinsdale R; Guwy AJ; Hawkes FR; Premier GC; Hawkes DL Biotechnol Bioeng; 2007 Jul; 97(4):759-70. PubMed ID: 17163512 [TBL] [Abstract][Full Text] [Related]
4. Influence of substrate concentration on the stability and yield of continuous biohydrogen production. Kyazze G; Martinez-Perez N; Dinsdale R; Premier GC; Hawkes FR; Guwy AJ; Hawkes DL Biotechnol Bioeng; 2006 Apr; 93(5):971-9. PubMed ID: 16353197 [TBL] [Abstract][Full Text] [Related]
5. The effect of pH on continuous biohydrogen production from swine wastewater supplemented with glucose. Li Y; Zhu J; Wu X; Miller C; Wang L Appl Biochem Biotechnol; 2010 Nov; 162(5):1286-96. PubMed ID: 20169419 [TBL] [Abstract][Full Text] [Related]
6. Anaerobic acidification of a synthetic wastewater in batch reactors at 55 degrees C. Yu HQ; Fang HH Water Sci Technol; 2002; 46(11-12):153-7. PubMed ID: 12523747 [TBL] [Abstract][Full Text] [Related]
7. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation. Kongjan P; Min B; Angelidaki I Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170 [TBL] [Abstract][Full Text] [Related]
8. Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control. Tenca A; Schievano A; Perazzolo F; Adani F; Oberti R Bioresour Technol; 2011 Sep; 102(18):8582-8. PubMed ID: 21530242 [TBL] [Abstract][Full Text] [Related]
9. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
10. Effect of pH control strategies and substrate concentration on the hydrogen yield from fermentative hydrogen production in large laboratory-scale. Mariakakis I; Krampe J; Steinmetz H Water Sci Technol; 2012; 65(2):262-9. PubMed ID: 22233904 [TBL] [Abstract][Full Text] [Related]
11. Enhancing anaerobic hydrolysis of cattle manure in leachbed reactors. Myint MT; Nirmalakhandan N Bioresour Technol; 2009 Feb; 100(4):1695-9. PubMed ID: 18977134 [TBL] [Abstract][Full Text] [Related]
12. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Xing Y; Li Z; Fan Y; Hou H Environ Sci Pollut Res Int; 2010 Feb; 17(2):392-9. PubMed ID: 19499259 [TBL] [Abstract][Full Text] [Related]
13. Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. Tang GL; Huang J; Sun ZJ; Tang QQ; Yan CH; Liu GQ J Biosci Bioeng; 2008 Jul; 106(1):80-7. PubMed ID: 18691536 [TBL] [Abstract][Full Text] [Related]
14. Swine manure fermentation for hydrogen production. Zhu J; Li Y; Wu X; Miller C; Chen P; Ruan R Bioresour Technol; 2009 Nov; 100(22):5472-7. PubMed ID: 19157863 [TBL] [Abstract][Full Text] [Related]
15. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Fan YT; Zhang YH; Zhang SF; Hou HW; Ren BZ Bioresour Technol; 2006 Feb; 97(3):500-5. PubMed ID: 15905089 [TBL] [Abstract][Full Text] [Related]
16. Comparison of two-stage thermophilic (68 degrees C/55 degrees C) anaerobic digestion with one-stage thermophilic (55 degrees C) digestion of cattle manure. Nielsen HB; Mladenovska Z; Westermann P; Ahring BK Biotechnol Bioeng; 2004 May; 86(3):291-300. PubMed ID: 15083509 [TBL] [Abstract][Full Text] [Related]
17. Biohydrogen production through fermentation using liquid swine manure as substrate. Zhu J; Wu X; Miller C; Yu F; Chen P; Ruan R J Environ Sci Health B; 2007 May; 42(4):393-401. PubMed ID: 17474019 [TBL] [Abstract][Full Text] [Related]
18. Continuous biogas production from fodder beet silage as sole substrate. Scherer PA; Dobler S; Rohardt S; Loock R; Büttner B; Nöldeke P; Brettschuh A Water Sci Technol; 2003; 48(4):229-33. PubMed ID: 14531447 [TBL] [Abstract][Full Text] [Related]
19. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies. Lo YC; Chen WM; Hung CH; Chen SD; Chang JS Water Res; 2008 Feb; 42(4-5):827-42. PubMed ID: 17889245 [TBL] [Abstract][Full Text] [Related]
20. Fermentative hydrogen production from tofu-processing waste and anaerobic digester sludge using microbial consortium. Kim MS; Lee DY Bioresour Technol; 2010 Jan; 101 Suppl 1():S48-52. PubMed ID: 19394818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]