These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 20674533)

  • 1. Impact of different types of walking aids on the physiological energy cost during gait for elderly individuals with several pathologies and dependent on a technical aid for walking.
    Cetin E; Muzembo J; Pardessus V; Puisieux F; Thevenon A
    Ann Phys Rehabil Med; 2010; 53(6-7):399-405. PubMed ID: 20674533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why is walker-assisted gait metabolically expensive?
    Priebe JR; Kram R
    Gait Posture; 2011 Jun; 34(2):265-9. PubMed ID: 21665475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The physiological cost of restricted weight bearing.
    Westerman RW; Hull P; Hendry RG; Cooper J
    Injury; 2008 Jul; 39(7):725-7. PubMed ID: 18329646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Walking energy expenditure in able-bodied individuals: a comparison of common measures of energy efficiency.
    Thomas SS; Buckon CE; Schwartz MH; Sussman MD; Aiona MD
    Gait Posture; 2009 Jun; 29(4):592-6. PubMed ID: 19188067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of three hours race walk on energy cost, cardiorespiratory parameters and stride duration in elite race walkers.
    Brisswalter J; Fougeron B; Legros P
    Int J Sports Med; 1996 Apr; 17(3):182-6. PubMed ID: 8739571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A gait stability investigation into FES-assisted paraplegic walking based on the walker tipping index.
    Ming D; Bai Y; Liu X; Qi H; Cheng L; Wan B; Hu Y; Wong Y; Luk KD; Leong JC
    J Neural Eng; 2009 Dec; 6(6):066007. PubMed ID: 19918110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal handgrip height of four-wheeled walker on various road conditions to reduce muscular load for elderly users with steady walking.
    Takanokura M
    J Biomech; 2010 Mar; 43(5):843-8. PubMed ID: 20006337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative gait assessment method based on energy exchange analysis during walking: a normal gait study.
    Gider F; Matjacić Z; Bajd T
    J Med Eng Technol; 2005; 29(2):90-4. PubMed ID: 15804858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-selected exercise intensity of habitual walkers.
    Spelman CC; Pate RR; Macera CA; Ward DS
    Med Sci Sports Exerc; 1993 Oct; 25(10):1174-9. PubMed ID: 8231763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Walking with a rollator and the level of physical intensity in adults 75 years of age or older.
    Eggermont LH; van Heuvelen MJ; van Keeken BL; Hollander AP; Scherder EJ
    Arch Phys Med Rehabil; 2006 May; 87(5):733-6. PubMed ID: 16635639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of stance control orthoses on gait characteristics and energy expenditure in knee-ankle-foot orthosis users.
    Davis PC; Bach TM; Pereira DM
    Prosthet Orthot Int; 2010 Jun; 34(2):206-15. PubMed ID: 20470059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of walking speed on lower limb muscle activity and energy consumption during treadmill walking of hemiparetic patients.
    Hesse S; Werner C; Paul T; Bardeleben A; Chaler J
    Arch Phys Med Rehabil; 2001 Nov; 82(11):1547-50. PubMed ID: 11689974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of energy expenditure during gait in children affected by cerebral palsy.
    Piccinini L; Cimolin V; Galli M; Berti M; Crivellini M; Turconi AC
    Eura Medicophys; 2007 Mar; 43(1):7-12. PubMed ID: 17072287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical energy in toddler gait. A trade-off between economy and stability?
    Hallemans A; Aerts P; Otten B; De Deyn PP; De Clercq D
    J Exp Biol; 2004 Jun; 207(Pt 14):2417-31. PubMed ID: 15184514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ankle-foot orthoses: effect on energy expenditure of gait in spastic diplegic children.
    Mossberg KA; Linton KA; Friske K
    Arch Phys Med Rehabil; 1990 Jun; 71(7):490-4. PubMed ID: 2350218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variability in energy cost and walking gait during race walking in competitive race walkers.
    Brisswalter J; Fougeron B; Legros P
    Med Sci Sports Exerc; 1998 Sep; 30(9):1451-5. PubMed ID: 9741616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constrained optimization in human walking: cost minimization and gait plasticity.
    Bertram JE
    J Exp Biol; 2005 Mar; 208(Pt 6):979-91. PubMed ID: 15767300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reappraisal of the comparative cost of human locomotion using gait-specific allometric analyses.
    Rubenson J; Heliams DB; Maloney SK; Withers PC; Lloyd DG; Fournier PA
    J Exp Biol; 2007 Oct; 210(Pt 20):3513-24. PubMed ID: 17921153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-speed relationship of walking: standard tables.
    Waters RL; Lunsford BR; Perry J; Byrd R
    J Orthop Res; 1988; 6(2):215-22. PubMed ID: 3343627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Upper extremity kinetics and energy expenditure during walker-assisted gait in children with cerebral palsy].
    Konop KA; Strifling KM; Wang M; Cao K; Eastwood D; Jackson S; Ackman J; Altiok H; Schwab J; Harris GF
    Acta Orthop Traumatol Turc; 2009; 43(2):156-64. PubMed ID: 19448356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.