These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 20674921)

  • 1. The influence of altering push force effectiveness on upper extremity demand during wheelchair propulsion.
    Rankin JW; Kwarciak AM; Mark Richter W; Neptune RR
    J Biomech; 2010 Oct; 43(14):2771-9. PubMed ID: 20674921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of wheelchair propulsion technique on upper extremity muscle demand: a simulation study.
    Rankin JW; Kwarciak AM; Richter WM; Neptune RR
    Clin Biomech (Bristol, Avon); 2012 Nov; 27(9):879-86. PubMed ID: 22835860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual muscle contributions to push and recovery subtasks during wheelchair propulsion.
    Rankin JW; Richter WM; Neptune RR
    J Biomech; 2011 Apr; 44(7):1246-52. PubMed ID: 21397232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated effect of reaction force redirection on the upper extremity mechanical demand imposed during manual wheelchair propulsion.
    Munaretto JM; McNitt-Gray JL; Flashner H; Requejo PS
    Clin Biomech (Bristol, Avon); 2012 Mar; 27(3):255-62. PubMed ID: 22071430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion.
    Vegter RJ; Hartog J; de Groot S; Lamoth CJ; Bekker MJ; van der Scheer JW; van der Woude LH; Veeger DH
    J Neuroeng Rehabil; 2015 Mar; 12():26. PubMed ID: 25889389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compensatory strategies during manual wheelchair propulsion in response to weakness in individual muscle groups: A simulation study.
    Slowik JS; McNitt-Gray JL; Requejo PS; Mulroy SJ; Neptune RR
    Clin Biomech (Bristol, Avon); 2016 Mar; 33():34-41. PubMed ID: 26945719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theoretical analysis of the influence of wheelchair seat position on upper extremity demand.
    Slowik JS; Neptune RR
    Clin Biomech (Bristol, Avon); 2013 Apr; 28(4):378-85. PubMed ID: 23608478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Load on the shoulder in low intensity wheelchair propulsion.
    Veeger HE; Rozendaal LA; van der Helm FC
    Clin Biomech (Bristol, Avon); 2002 Mar; 17(3):211-8. PubMed ID: 11937259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is effective force application in handrim wheelchair propulsion also efficient?
    Bregman DJ; van Drongelen S; Veeger HE
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):13-9. PubMed ID: 18990473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new method to quantify demand on the upper extremity during manual wheelchair propulsion.
    Sabick MB; Kotajarvi BR; An KN
    Arch Phys Med Rehabil; 2004 Jul; 85(7):1151-9. PubMed ID: 15241767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of static and dynamic optimization muscle force predictions during wheelchair propulsion.
    Morrow MM; Rankin JW; Neptune RR; Kaufman KR
    J Biomech; 2014 Nov; 47(14):3459-65. PubMed ID: 25282075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of simulated rotator cuff tears on the risk for impingement in handbike and handrim wheelchair propulsion.
    van Drongelen S; Schlüssel M; Arnet U; Veeger D
    Clin Biomech (Bristol, Avon); 2013 Jun; 28(5):495-501. PubMed ID: 23664372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pushrim forces and joint kinetics during wheelchair propulsion.
    Robertson RN; Boninger ML; Cooper RA; Shimada SD
    Arch Phys Med Rehabil; 1996 Sep; 77(9):856-64. PubMed ID: 8822674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction and evaluation of a model for wheelchair propulsion in an individual with tetraplegia.
    Odle B; Reinbolt J; Forrest G; Dyson-Hudson T
    Med Biol Eng Comput; 2019 Feb; 57(2):519-532. PubMed ID: 30255235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of kinematics, kinetics, and EMG throughout wheelchair propulsion in able-bodied and persons with paraplegia: an integrative approach.
    Dubowsky SR; Sisto SA; Langrana NA
    J Biomech Eng; 2009 Feb; 131(2):021015. PubMed ID: 19102574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploration of shoulder load during hand-rim wheelchair start-up with and without power-assisted propulsion in experienced wheelchair users.
    Kloosterman MG; Buurke JH; Schaake L; Van der Woude LH; Rietman JS
    Clin Biomech (Bristol, Avon); 2016 May; 34():1-6. PubMed ID: 26999794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Influence of Sex on Upper Extremity Joint Dynamics in Pediatric Manual Wheelchair Users With Spinal Cord Injury.
    Hanks MM; Leonardis JM; Schnorenberg AJ; Krzak JJ; Graf A; Vogel LC; Harris GF; Slavens BA
    Top Spinal Cord Inj Rehabil; 2021; 27(3):26-37. PubMed ID: 34456544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 2-D model of wheelchair propulsion.
    Morrow DA; Guo LY; Zhao KD; Su FC; An KN
    Disabil Rehabil; 2003 Feb 18-Mar 4; 25(4-5):192-6. PubMed ID: 12623626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle forces analysis in the shoulder mechanism during wheelchair propulsion.
    Lin HT; Su FC; Wu HW; An KN
    Proc Inst Mech Eng H; 2004; 218(4):213-21. PubMed ID: 15376723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of applied forces in handrim wheelchair propulsion.
    Lin CJ; Lin PC; Guo LY; Su FC
    J Biomech; 2011 Feb; 44(3):455-60. PubMed ID: 20980008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.