These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 20675114)

  • 1. Controlled combustion tests and bottom ash analysis using household waste with varying composition.
    Hu Y; Bakker M; Brem G; Chen G
    Waste Manag; 2011 Feb; 31(2):259-66. PubMed ID: 20675114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of operational conditions, waste input and ageing on contaminant leaching from waste incinerator bottom ash: a full-scale study.
    Hyks J; Astrup T
    Chemosphere; 2009 Aug; 76(9):1178-84. PubMed ID: 19595431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-combustion of coal and sewage sludge: chemical and ecotoxicological properties of ashes.
    Barbosa R; Lapa N; Boavida D; Lopes H; Gulyurtlu I; Mendes B
    J Hazard Mater; 2009 Oct; 170(2-3):902-9. PubMed ID: 19515486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leachability of municipal solid waste ashes in simulated landfill conditions.
    Li LY; Ohtsubo M; Higashi T; Yamaoka S; Morishita T
    Waste Manag; 2007; 27(7):932-45. PubMed ID: 17258447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term leaching test of incinerator bottom ash: evaluation of Cu partition.
    Lin CF; Wu CH; Liu YC
    Waste Manag; 2007; 27(7):954-60. PubMed ID: 16997543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the characteristics of bottom and fly ashes generated from various incineration processes.
    Chang FY; Wey MY
    J Hazard Mater; 2006 Dec; 138(3):594-603. PubMed ID: 16839684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of bottom ash in municipal solid waste incinerators for its use in road base.
    Forteza R; Far M; Seguí C; Cerdá V
    Waste Manag; 2004; 24(9):899-909. PubMed ID: 15504667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow analysis of heavy metals in a pilot-scale incinerator for residues from waste electrical and electronic equipment dismantling.
    Long YY; Feng YJ; Cai SS; Ding WX; Shen DS
    J Hazard Mater; 2013 Oct; 261():427-34. PubMed ID: 23973476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated carbonation of municipal solid waste incineration fly ashes.
    Li X; Bertos MF; Hills CD; Carey PJ; Simon S
    Waste Manag; 2007; 27(9):1200-6. PubMed ID: 17015006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The behaviour of ashes and heavy metals during the co-combustion of sewage sludges in a fluidised bed.
    Helena Lopes M; Abelha P; Lapa N; Oliveira JS; Cabrita I; Gulyurtlu I
    Waste Manag; 2003; 23(9):859-70. PubMed ID: 14583249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leachability of automotive shredder residues burned in a fluidized bed system.
    Lopes MH; Freire M; Galhetas M; Gulyurtlu I; Cabrita I
    Waste Manag; 2009 May; 29(5):1760-5. PubMed ID: 19131234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical and ecotoxicological characterization of ashes obtained from sewage sludge combustion in a fluidised-bed reactor.
    Lapa N; Barbosa R; Lopes MH; Mendes B; Abelha P; Boavida D; Gulyurtlu I; Oliveira JS
    J Hazard Mater; 2007 Aug; 147(1-2):175-83. PubMed ID: 17261348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution and leaching characteristics of trace elements in ashes as a function of different waste fuels and incineration technologies.
    Saqib N; Bäckström M
    J Environ Sci (China); 2015 Oct; 36():9-21. PubMed ID: 26456601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan.
    Chang CY; Wang CF; Mui DT; Cheng MT; Chiang HL
    J Hazard Mater; 2009 Jun; 165(1-3):766-73. PubMed ID: 19046804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes.
    Allegrini E; Maresca A; Olsson ME; Holtze MS; Boldrin A; Astrup TF
    Waste Manag; 2014 Sep; 34(9):1627-36. PubMed ID: 24889793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of waste input and combustion technology on MSWI bottom ash quality.
    Rendek E; Ducom G; Germain P
    Waste Manag; 2007; 27(10):1403-7. PubMed ID: 17509859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pretreatment and utilization of waste incineration bottom ashes: Danish experiences.
    Astrup T
    Waste Manag; 2007; 27(10):1452-7. PubMed ID: 17512719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the environmental impact of ashes used in a landfill cover construction.
    Travar I; Lidelöw S; Andreas L; Tham G; Lagerkvist A
    Waste Manag; 2009 Apr; 29(4):1336-46. PubMed ID: 19081235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demobilisation of critical contaminants in four typical waste-to-energy ashes by carbonation.
    Todorovic J; Ecke H
    Waste Manag; 2006; 26(4):430-41. PubMed ID: 16403618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recirculation of biomass ashes onto forest soils: ash composition, mineralogy and leaching properties.
    Maresca A; Hyks J; Astrup TF
    Waste Manag; 2017 Dec; 70():127-138. PubMed ID: 28947146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.